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Abstract

We consider a linear regression model where there are group structures in covariates. The group

LASSO has been proposed for group variable selections. Many nonconvex penalties such as SCAD

and MCP were extended to group variable selection problems. The group coordinate descent (GCD)

algorithm is used popularly for fitting these models. However, the GCD algorithms are hard to

be applied to nonconvex group penalties due to computational complexity unless the design matrix

is orthogonal. In this paper, we propose an efficient optimization algorithm for nonconvex group

penalties by combining the concave convex procedure and the group LASSO algorithm. We also

extend the proposed algorithm for generalized linear models. We evaluate numerical efficiency of

the proposed algorithm compared to existing GCD algorithms. In addition, we perform simulation

studies and real data analysis to compare the nonconvex group penalties and the group LASSO.
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1 Introduction

We consider the linear regression model with K groups of covariates

y =
K∑

k=1

Xkβk + ε, (1)

where y = (y1, . . . , yn)
′ is the vector of response variables, Xk is the n× pk design matrix corresponding

to the kth group with xik, i = 1, . . . , n being pk × 1 vector, βk = (βk1, . . . , βkpk
)′ ∈ Rpk is the vector of

the regression coefficients in the kth group and ε = (ε1, . . . , εn)
′ is the random error vector with E(ε) = 0

and V ar(ε) = σ2In for some 0 < σ2 <∞. Here, the total number of covariates is p =
∑K

k=1 pk.

In many regression problems, explanatory variables can often be naturally grouped. For example,

categorical covariates are represented by a group of dummy variables. In nonparametric additive models,

continuous covariates can be represented by a linear combination of a set of basis functions. In these

cases, we are naturally interested in selecting important groups of covariates rather than individual ones.

There has been much work on the penalized method for group variable selection. Yuan and Lin (2006)

proposed the group LASSO as a natural extension of the LASSO (Tibshirani, 1996). Kim et al. (2006)

developed the blockwise sparse regression, which is an extension of the group LASSO for generalized

linear models. The group LASSO penalty uses the ℓ2-norm of the coefficients within each group. Several

authors have studied theoretical properties of the group LASSO, but found that a certain irrepresentable

condition is required for group selection consistency. (Bach, 2008; Huang and Zhang, 2010; Wei and
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Huang, 2010). To overcome this drawback, nonconvex penalized methods have been proposed for group

variable selection. Wang et al. (2007) and Huang et al. (2012a) proposed the group smoothly clipped

absolute deviation (SCAD) penalty and group minimax concave penalty (MCP), respectively. They

showed that these nonconvex methods satisfy the oracle property in group selection (Huang et al., 2012b).

In this paper, we consider an optimization algorithm for nonconvex group penalized methods. The

group coordinate descent (GCD) algorithm has been used in Yuan and Lin (2006) for the group LASSO

and Wei and Zhu (2012) for the group MCP, assuming that the design matrix of each group is orthogonal.

However, Friedman et al. (2010) pointed out that the solution with the orthogonality assumption will not

be a solution of the original problem. The GCD algorithm is not easy to use without the orthogonality

assumption since the closed form solution in each iteration does not exist. For the group LASSO, Foygel

and Drton (2010) and Qin et al. (2010) proposed the GCD algorithm without the orthogonal assumption.

For the group SCAD, Wang et al. (2007) used the local quadratic approximation (LQA) algorithm which

does not require the orthogonality assumption. However, the LQA algorithm is incapable of producing

an exact sparse solution since it relies on the quadratic approximation of the penalty function, and is

computationally inefficient since it requires the repeated factorization of large matrices. With authors’s

knowledge, there is no optimization algorithm which gives an exact solution for the group SCAD and

group MCP without the orthogonality assumption.

In this paper, we consider the class of the nonconvex penalties including the group SCAD and group

MCP, and propose an optimization algorithm which can be applied to all of the penalties in this class.

The main idea of the proposed algorithm is that we convert the nonconvex group penalty to the group

LASSO penalty via the concave convex procedure (CCCP) in Yuille and Rangarajan (2003), and then

we apply the GCD algorithm of Foygel and Drton (2010). The proposed method is easy to implement

and always converges to a local minimum. In addition, we extend the proposed algorithm for generalized

linear models.

This paper is organized as follows. In Section 2, we describe the existing penalties and corresponding

GCD algorithms. In Section 3, we introduce the class of nonconvex penalties and propose an optimization

algorithm. Section 4 presents numerical efficiencies of the existing GCD algorithm and proposed algorithm

through analysing simulated as well as real data sets.

Concluding remarks are presented in Section 5.
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2 Group coordinate descent algorithm

2.1 Group LASSO

For a given λ > 0, the group LASSO estimator proposed by Yuan and Lin (2006) is defined as the

minimizer of

Qλ(β) =
1

2n

∥∥∥y −
K∑

k=1

Xkβk

∥∥∥2
2
+ λ

K∑
k=1

√
pk∥βk∥2, (2)

where λ > 0 is a regularization parameter and ∥·∥2 stands for the ℓ2-norm. For a computation of the group

LASSO, Yuan and Lin (2006) used the GCD algorithm which is a natural extension of the coordinate

descent algorithm (Fu, 1998; Friedman et al., 2007). The GCD algorithm optimizes the objective function

with respect to each group iteratively until the solution converges. To explain the GCD algorithm for

the group LASSO, we consider the group coordinate step. That is, for fixed coefficients (β̃l, l ̸= k), we

are to minimize (2) with respect to the kth group coefficients βk. Using some algebra, it can be shown

that this problem is equivalent to minimizing Q̃λ(βk) defined as

Q̃λ(βk) =
1

2n

∥∥∥rk −Xkβ̃k

∥∥∥2
2
+ λ

√
pk∥βk∥2 (3)

where rk = y−
∑

l ̸=k Xlβ̃l is the partial residual vector. With the orthogonal assumption for each group,

i.e., X′
kXk/n = Ipk

, Yuan and Lin (2006) showed that the minimizer of Q̃λ(βk) in (3) has the explicit

form as

β̂k =

(
1−

λ
√
pk

∥sk∥2

)
+

sk, (4)

where sk = X′
krk/n and the subscript ’+’ indicates the positive part. The group LASSO solution can

be obtained by iteratively applying (4) to each group until it converges. If the covariates in each group

are not orthogonal, this approach requires to orthogonalize them before applying the GCD algorithm.

However, as noted by Friedman et al. (2010), it will not provide the solution of the original problem.

Foygel and Drton (2010) and Qin et al. (2010) proposed the GCD algorithm which does not require

the orthogonalization. They showed that the exact solution for any single group problem in (3) without

the orthogonality assumption can be obtained by an efficient application of Newton’s method as in the

Algorithm 1.

2.2 Group SCAD and group MCP

The group LASSO is constructed by replacing the LASSO penalty with the ℓ2-norms of coefficients

within the groups. The group LASSO has many attractive properties, but it does not possess the group

level selection consistency. In fact, it tends to select more groups (variables) than necessary. Nonconvex

penalized methods satisfying the oracle property have been proposed for group variable selection. A
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Algorithm 1 Group coordinate descent algorithm for group LASSO

Choose any initial vector β̃ ∈ Rp and compute the eigen-decomposition of X′
kXk/n = U′

kDkUk with

Dk = diag{dk1 , . . . , dkpk
}, for all k.

repeat

for k = 1, . . . ,K do

Calculate rk = y −
∑

l ̸=k Xlβ̃l and vk = UkX
′
krk.

if ∥vk∥2 ≤ λ
√
pk then

β̂k = 0.

else

Find the unique δ > 0 satisfying f(δ) =
∑pk

j=1(vk)
2
j/(d

k
j δ + λ

√
pk)

2 = 1.

Update β̂k = U′
k(Dk + δ−1λ

√
pkIpk

)−1vk.

end if

end for

Update β̃ by β̂.

until convergence.

nonconvex group penalized estimator is defined as the minimizer of

Qλ(β) =
1

2n

∥∥∥y −
K∑

k=1

Xkβk

∥∥∥2
2
+

K∑
k=1

Jλk
(∥βk∥2), (5)

where Jλk
(·) are the nonconvex penalty functions and λk are the regularization parameters. We set

λk = λ
√
pk for some λ > 0. If Jλ(·) is the SCAD penalty in Fan and Li (2001), the estimator becomes the

group SCAD (Wang et al., 2007). On the other hand, the group MCP estimator of Huang et al. (2012b)

is obtained by using the MCP of Zhang (2010) for Jλ(·).
Breheny and Huang (2012) and Wei and Zhu (2012) extended the GCD algorithm of Yuan and Lin

(2006) to find the group SCAD and group MCP estimators. They obtained the explicit form of the

solution for each iteration under the orthogonality assumption within each group. The closed form

solutions of the group SCAD and group MCP in the kth group are given as follows:

β̂
gMCP

k =

 a
a−1S(sk, λk) if ∥sk∥2 ≤ aλk,

sk if ∥sk∥2 > aλk,
(6)

β̂
gSCAD

k =


S(sk, λk) if ∥sk∥2 ≤ 2λk,

a−1
a−2S

(
sk,

aλk

a−1

)
if 2λk < ∥sk∥2 ≤ aλk,

sk if ∥sk∥2 > aλk,

(7)

for some a > 2 in the group SCAD and a > 1 in the group MCP, where S(z, λ) = (1 − λ/∥z∥2)+z
is the multivariate soft-thresholding operator. The GCD algorithm can be easily applied to the group

SCAD and group MCP by the update rules in (6) and (7). Since these update rules are simple, the
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corresponding algorithms are efficient and stable. Also, Tseng (2001) established that the GCD algorithm

has the descent property, which means that the objective function decreases in each iteration, hence the

algorithms converge to a local minimum (Breheny and Huang, 2012; Wei and Zhu, 2012).

2.3 Discussion for the orthogonality

The algorithm of Section 2.2 can not be directly applied to a model without the orthogonality of each

group. For general cases, the algorithm can be applied to the transformed design matrix after orthogo-

nalizing the design matrix for each group as follows. Each group of covariates Xk can be orthogonalized

by using a Cholesky decomposition, i.e., X′
kXk/n = U′

kUk, ∀k, where Uk is an upper triangular matrix.

Let Zk = XkU
−1
k and θk = Ukβk so that Z′

kZk/n = Ipk
and Zkθk = Xkβk. Then, the algorithm can

be applied to the transformed minimization problem

θ̂ = argmin
θ

{
1

2n

∥∥∥y −
K∑

k=1

Zkθk

∥∥∥2
2
+

K∑
k=1

Jλk
(∥θk∥2)

}
, (8)

where θ̂ = (θ̂1, . . . , θ̂K) is the solution with the transformed design matrix. Finally, the solution θ̂ is

transformed back to the original problem with β̂k = U−1
k θk,∀k. As mentioned earlier, the resulting

solution is not the minimizer of Qλ(β) in (5), which is the objective function with original covariates. In

fact, the objective function in (8) is exactly same as the objective function

1

2n

∥∥∥y −
K∑

k=1

Xkβk

∥∥∥2
2
+

K∑
k=1

Jλk
(∥βk∥Σk

), (9)

where ∥βk∥Σk
= (β′

kΣkβk)
1/2 and Σk = X′

kXk/n. Without the orthogonality assumption, the existing

GCD algorithm gives a minimization of (9), not that of the original problem Qλ(β) in (5).

3 The proposed algorithm

3.1 Class of nonconvex penalties

We first introduce the class of nonconvex penalties considered in Kim and Kwon (2012). Let ∇Jλ(t) be
the first derivative of Jλ(t) with respect to t. Consider a class of nonconvex penalties Jλ(·) that satisfy
the following three conditions

(P1) ∇Jλ(·) is nonnegative, nonincreasing and continuous over (0,∞),

(P2) limt→0+ ∇Jλ(t) = λ and ∇Jλ(t) = 0 for t ≥ aλ,

(P3) ∇Jλ(t) ≥ (λ− t/a)+I(0 < t < aλ) for t > 0,

for some a > 0. This class includes the SCAD penalty (Fan and Li, 2001)

∇Jλ(t) = λI(0 < t < λ) + (aλ− t)+/(a− 1)I(t ≥ λ),
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and MCP (Zhang, 2010)

∇Jλ(t) = (λ− t/a)+I(0 < t < aλ).

Note that the penalties in this class satisfy the oracle property. Also, the CCCP algorithm can be applied

to the penalties in this class since J̃λ(t) = Jλ(t) − λ|t| is always a differentiable concave function (Kim

et al., 2008; Lee et al., 2012).

3.2 Proposed optimization algorithm

The GCD algorithm described in Section 2.2 can be applied only to the models when the design matrix

of each group is orthogonal. If the design matrices are not orthogonal, there is no closed form solution

in each iteration, and hence the GCD algorithm can not be directly applied to the nonconvex group

penalized methods.

In this section, we propose an optimization algorithm which can be applied to nonconvex group

penalties without the orthogonality assumption. The main idea of the proposed algorithm is that we

convert the objective function to a convex problem via the CCCP, and then apply the GCD algorithm

of Foygel and Drton (2010).

The CCCP algorithm of Yuille and Rangarajan (2003) is one of the powerful optimization algorithm for

nonconvex problems and has been used popularly in many areas including nonconvex penalized estimators

(Kim et al., 2008) and semi-supervised learning problems (Collobert et al., 2006; Shen et al., 2003). The

key idea of the CCCP algorithm is to update the solution by the minimizer of the tight convex upper

bound of the objective function at the current solution. To explain more details, let Q(β) be the objective

function to be minimized. Suppose that Q(β) consist of a sum of convex and concave functions such that

Q(β) = Qvex(β) + Qcav(β), where Qvex is convex and Qcav is concave. For a given current solution β̃,

the tight convex upper bound is defined by

U(β) = Qvex(β) + {∂Qcav(β̃)/∂β}′β.

Then we update the current solution by the minimizer of U(β) and iterate this procedure until the

solution converges. Since U(β) is the convex function, we can easily find the minimizer using various

convex optimization algorithms. One important property of the CCCP algorithm is that after each

iteration, the objective function always decreases and the solution converges to a local minimum (Yuille

and Rangarajan, 2003).

Recall that the nonconvex group penalized estimator is defined as a minimizer of

Qλ(β) =
1

2n

∥∥∥y −
K∑

k=1

Xkβk

∥∥∥2
2
+

K∑
k=1

Jλk
(∥βk∥2), (10)

where Jλ(·) is a nonconvex penalty function. Define J̃λ(β) =
∑K

k=1{Jλk
(||βk||2) − λ

√
pk||βk||2}. Then
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we rewrite the objective function (10) as

Qλ(β) =
1

2n

∥∥∥y −
K∑

k=1

Xkβk

∥∥∥2
2
+ J̃λ(β) + λ

K∑
k=1

√
pk∥βk∥2. (11)

It can be easily shown that J̃λ(β) is a differentiable concave function with respect to β. That is, the

objective function Qλ(β) in (11) consists of the sum of concave and convex functions. Thus, we can apply

the CCCP algorithm. Let ∂J̃λ(β) be the gradient of J̃λ(β). For a given current solution β̃, the tight

convex upper bound of Qλ(β) is defined as

Uλ(β) =
1

2n

∥∥∥y −
K∑

k=1

Xkβk

∥∥∥2
2
+ ∂J̃λ(β̃)

′β + λ
K∑

k=1

√
pk∥βk∥2.

We then update the current solution by the minimizer of Uλ(β), which can be obtained easily by group

LASSO algorithm of Foygel and Drton (2010). The proposed algorithm is summarized in Algorithm 2.

Algorithm 2 The proposed optimization algorithm for nonconvex group penalties

Find an initial estimator β̃ ∈ Rp.

Compute the spectral-decomposition of X′
kXk/n = U′

kDkUk with Dk = diag{dk1 , . . . , dkpk
}, for all k.

repeat

Calculate ∂J̃λ(β) at β̃, and denote by ∂J̃λ(β̃).

repeat

for k = 1, . . . ,K do

Calculate vk = −Uk(−X′
ky/n+ ∂J̃λ(β̃)k + 2X′

kX−kβ̃−k/n).

if ∥vk∥2 ≤ λ
√
pk then

β̂k = 0.

else

Find the unique δ > 0 satisfying f(δ) =
∑pk

j=1(vk)
2
j/(d

k
j δ + λ

√
pk)

2 = 1.

Update β̂k = U′
k(Dk + δ−1λ

√
pkIpk

)−1vk.

end if

end for

until convergence.

Update β̃ by β̂.

until convergence.

Furthermore, we check whether the least square estimator of βk is a solution when ∥β̃k∥2 > aλ
√
pk

in each iteration of the algorithm. As a result, we only apply the group LASSO algorithm to a subset of

groups. (N in Algorithm 3). These modification makes the algorithm slightly faster when the number

of nonzero groups with the strong signal are large. The modified proposed algorithm summarized in

Algorithm 3.
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Algorithm 3 The modified proposed optimization algorithm for nonconvex group penalties

Find an initial estimator β̃ ∈ Rp.

Compute the spectral-decomposition of X′
kXk/n = U′

kDkUk with Dk = diag{dk1 , . . . , dkpk
}, for all k.

repeat

Define A = {k; ∥β̃k∥2 ≥ aλ
√
pk} and N = Ac.

Calculate rk = y −
∑

l ̸=k Xlβ̃l and sk = (X′
kXk)

−1X′
krk.

for k ∈ A do

if ∥sk∥2 ≥ λ
√
pk then

β̂k = sk.

else

Update the set N by N ∪ {k}.
end if

end for

Calculate ∂J̃λ(β) at β̃, and denote by ∂J̃λ(β̃).

repeat

for k ∈ N do

Calculate vk = −Uk(−X′
ky/n+ ∂J̃λ(β̃)k + 2X′

kX−kβ̃−k/n).

if ∥vk∥2 ≤ λ
√
pk then

β̂k = 0.

else

Find the unique δ > 0 satisfying f(δ) =
∑pk

j=1(vk)
2
j/(d

k
j δ + λ

√
pk)

2 = 1.

Update β̂k = U′
k(Dk + δ−1λ

√
pkIpk

)−1vk.

end if

end for

until convergence.

Update β̃ by β̂.

until convergence.
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In the following proposition, we state formally a convergence result for the proposed algorithm, which

follows directly from Theorem 2 of Yuille and Rangarajan (2003).

Proposition 1 Let β(s) denote the coefficient vector after s iterations for s=0,1,2,. . . . Then for a fixed

λ > 0, Qλ

(
β(s+1)

)
≤ Qλ

(
β(s)

)
, for all s. Furthermore, every limit point of the sequence {β(s) : s ≥ 0}

is a stationary point of Qλ(β).

3.3 Regularization parameter selection

Given a current solution β̃, the proposed algorithm finds the minimizer of

1

2n

∥∥∥y −
K∑

k=1

Xkβk

∥∥∥2
2
+ ∂J̃λ(β̃)

′β + λ

K∑
k=1

√
pk∥βk∥2,

until β̃ converges to β̂. The nonzero elements of the final solution β̂ satisfy the Karush-Kuhn-Tucker

(KKT) condition

−X′
A(y −XAβ̂A)/n+ ∂J̃λ(β̂A) + λ

∑
k∈A

w′
kβ̂k = 0,

where A = {k : ∥β̂k∥2 ̸= 0}, XA is the submatrix of X whose columns are in A, β̂A = (β̂k, k ∈ A),

J̃λ(β̂A) =
∑

k∈A J̃λk
(∥β̂k∥2) and w = (w1, . . . ,wK) with wk = (

√
pk/∥β̂k∥2, . . . ,

√
pk/∥β̂k∥2) ∈ Rpk .

Thus, we can write the predicted vector of the response as

Xβ̂ = XA{X′
AXA + nH(β̂A)}−1X′

Ay,

where H(β̂A) = diag(∂J̃λ(β̂A)/∂β̂A + λwA). Hence, when p < n, to select the regularization parameter

λ we can use the BIC with the generalized degrees of freedom given as

BIC(λ) = log
(
∥y −Xβ̂(λ)∥22/n) + df(λ) log(n)/n,

where β̂(λ) is the solution for a given λ and the generalized degrees of freedom df(λ) is defined as

(Tibshirani, 1996; Fan and Li, 2001)

df(λ) = trace
[
{X′

AXA + nH(β̂A)}−1X′
AXA

]
.

When p > n, we may use the cross validation method.

3.4 Extension to generalized linear models

We can extend the algorithm described in Section 3.2 to generalized linear models with grouped covariates.

We consider the penalized log-likelihood estimator using a nonconvex group penalty. Suppose that the

likelihood belongs to the exponential family, where the generic density form can be written as (McCullagh

and Nelder, 1989)

f(y|x,β) = c(y) exp(yx′β − b(β)),
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where b(·) and c(·) are known functions. Let {(xi, yi) : xi ∈ Rp, yi ∈ R, i = 1, . . . , n} be n pairs of p-

dimensional covariates and a response, where covariates are divided into K groups as in the linear model

(1). The nonconvex group penalized estimator for the generalized linear model is defined as a minimizer

of

Qλ(β) = L(β) +

K∑
k=1

Jλk
(∥βk∥2). (12)

where L(β) =
∑n

i=1{−yi(x′
iβ) + b(x′

iβ)}/n is the negative log-likelihood function. For example, the

negative log-likelihood of the logistic regression is given as

L(β) =
1

n

n∑
i=1

{
− yi(x

′
iβ) + log(1 + exp(x′

iβ))
}
.

Note that the negative log-likelihood function is convex but not a quadratic function. Hence, the proposed

algorithm can not be directly applied to generalized linear models. However, we can combine the proposed

algorithm with the Newton-Raphson algorithm. Suppose the log-likelihood function is smooth and has

the second derivative with respect to β. For a given current solution β̃, we can approximate the negative

log-likelihood L(β) as a quadratic function by Taylor expansion around the current solution. That is,

Qλ(β) can be locally approximated by Q̃λ(β), where

Q̃λ(β) ≈ (β − β̃)′∇L(β̃) + (β − β̃)′∇2L(β̃)(β − β̃)/2 +

K∑
k=1

Jλk
(∥βk∥2). (13)

Here, ∇L(β̃) and ∇2L(β̃) are the first and second derivatives of L(β), respectively. Then, we apply the

proposed algorithm to minimize (13). Finally, we iterate these two steps until convergence. In general,

this procedure is not guaranteed to converge. However, Lee et al. (2014) showed that adding a simple

line search guarantees the convergence.

4 Algorithm efficiency

In this section, we investigate the efficiency of the proposed algorithms in terms of accuracy, computing

time and sparseness through analysing simulated as well as real data sets. We compare the proposed

algorithms with the GCD algorithms for group LASSO, group MCP and group SCAD. All algorithms

are implemented by the R program and the computing time is measured using system.time() in the R

system with Intel Core i7-4790 3.60GHz with 16GB memory. In our experiments, all algorithms stopped

when the relative change of the ℓ2-norm of the coefficients is less than 10−6.

4.1 Linear regression model

First, we consider the linear regression model with group structures of covariates in (1). Simulated data

sets are generated as follows. The design matrix consists of 100 groups (block), each with 5 elements. The
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coefficients for the first and second groups are equal to all 0.5 and −0.5, respectively; the coefficients in the

other 98 groups are all zero. We set Var(ϵ) = 1 and n = 100. We generate 100 simulated data sets, and

calculate the averages of the objective function values (Cost) in (5), and the averages of computing times

(Time) as well as the averages of the number of selected groups (#Group) and variables (#Variable).

We consider the two cases, the orthogonal case (X′
kXk/n = Ipk

, ∀k) and non-orthogonal case. For the

orthogonal case, we generate a covariate vector from the multivariate Gaussian distribution with mean 0,

variance 1 and identity correlation matrix, and then orthogonalize covariates in each group. For the non-

orthogonal case, we generate a covariate vector from the multivariate Gaussian distribution with mean 0,

variance 1 and block-diagonal correlation structure that has within-block correlation ρ = 0, 0.5 and 0.9.

Note that the proposed algorithm minimizes (5) while the GCD algorithm minimizes (9). The objective

functions (5) and (9) are the same for the orthogonal case, but they differ for the nonorthogonal case.

We use β̃ = 0 for the initial value.

Table 1: Comparison of the proposed and GCD algorithms for the orthogonal case in the linear regression

model.
λ Method Cost Time #Group

gLASSO1 1.4680 0.0758 1.28

gLASSO2 1.4681 0.0707 1.28

λ = 0.5 gMCP1 1.4595 0.1045 1.28

gMCP2 1.4595 0.0697 1.28

gSCAD1 1.4680 0.1099 1.28

gSCAD2 1.4681 0.0685 1.28

gLASSO1 0.8948 0.0873 8.55

gLASSO2 0.8949 0.0905 8.55

λ = 0.1 gMCP1 0.6555 0.1361 5.75

gMCP2 0.6518 0.0983 5.45

gSCAD1 0.7304 0.1505 6.05

gSCAD2 0.7351 0.1005 6.03

Table 1 summarizes the results for the orthogonal cases. In the table, the subscript 1 and 2 in each

method represent the proposed algorithm and existing GCD algorithm, respectively. All the results

except the computing times are almost equal, which is because the two algorithms minimize the same

objective function. The results indicate that the proposed algorithm is not unacceptably slow compared

to the GCD algorithm.

Table 2 shows the results for the non-orthogonal cases, in which the proposed algorithms yield smaller

values of the objective function (5) than the GCD algorithms. Furthermore, the differences of the values

of the objective functions between the proposed and GCD algorithms are getting larger as the within-

block correlation ρ becomes larger. In contrast, by comparing computing times in Tables 1 and 2, we can
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Table 2: Comparison of the proposed and GCD algorithms in the linear regression model.

ρ = 0 ρ = 0.5 ρ = 0.9

λ Method Cost Time #Group Cost Time #Group Cost Time #Group

gLASSO1 1.5578 0.1148 1.52 2.1748 0.1292 2.02 2.2816 0.1282 2.02

gLASSO2 1.5665 0.1169 1.71 2.3550 0.1411 2.00 2.8055 0.1430 2.01

0.5 gMCP1 1.5382 0.1940 1.49 1.9934 0.2168 2.00 2.0586 0.2112 2.00

gMCP2 1.5470 0.1242 1.70 2.0530 0.1538 2.00 2.2656 0.1584 2.00

gSCAD1 1.5578 0.1726 1.52 2.1747 0.1920 2.02 2.2805 0.1985 2.02

gSCAD2 1.5665 0.1193 1.71 2.3100 0.1515 2.00 2.5999 0.1633 2.00

gLASSO1 0.9155 0.1771 11.04 0.9678 0.2026 11.14 0.9833 0.2104 14.41

gLASSO2 0.9225 0.1576 10.84 1.0403 0.1850 11.08 1.2921 0.1864 11.12

0.1 gMCP1 0.6811 0.2981 7.31 0.6739 0.3085 9.44 0.6728 0.3275 13.05

gMCP2 0.6879 0.1897 6.61 0.7132 0.1913 6.81 0.7928 0.1970 6.82

gSCAD1 0.7565 0.2948 7.65 0.7474 0.3115 9.64 0.7461 0.3293 13.10

gSCAD2 0.7616 0.1811 7.50 0.7853 0.1840 7.67 0.8622 0.1796 7.56

see that differences of computing times are not sensitive to the within-block correlation.

4.2 Logistic regression model

Second, we consider the logistic regression model with the success probability πi,

πi = P (yi = 1|xi) = exp(x′
iβ)/{1 + exp(x′

iβ)},

where the vector of covariates xi consists of K groups. We generate 100 samples of size n = 100 with the

same design matrices and true coefficients as in the linear regression model. For the logistic regression,

the approximated quadratic objective function Q̃λ(β) at the current solution β̃ in (13) can be expressed

as

Q̃λ(β) ≈
1

2n

(
z−Xβ

)′
W(β̃)

(
z−Xβ

)
+

K∑
k=1

Jλk
(∥βk∥2),

where z = (z1, . . . , zn) and W(β̃) are the vector of working responses and the diagonal matrix of weights

with zi = x′
iβ̃ + (yi − πi)/(πi(1 − πi)) and wi = πi(1 − πi). Note that both the proposed and GCD

algorithms are iteratively applied to the approximated quadratic objective function Q̃λ(β). For each

quadratic approximation step, all algorithms are required to orthogonalze X′W(β̃)X/n which depends

on β̃, not X′X/n. Hence, we do not consider the orthogonal cases for the logistic regression, and only

consider the nonorthogonal cases with various within-block correlations.

Table 3 shows the results for the logistic regression model. The proposed algorithms provide more

accurate solutions than the GCD algorithms in terms of the values of the objective functions. The larger

ρ is, the larger difference between the two algorithms is. The simulation results amply illustrate that the

proposed algorithm minimizes the objective function (12) well without requiring too much computing

time.
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Table 3: Comparison of the proposed and GCD algorithms in the logistic regression model.

ρ = 0 ρ = 0.5 ρ = 0.9

λ Method Cost Time #Group Cost Time #Group Cost Time #Group

gLASSO1 0.6833 0.3058 0.93 0.6096 0.4819 2.12 0.5606 0.5102 2.26

gLASSO2 0.6843 0.2351 1.09 0.6448 0.2789 1.90 0.6652 0.2937 1.98

0.1 gMCP1 0.6768 0.5175 0.84 0.5747 0.8074 1.99 0.5213 0.8643 2.00

gMCP2 0.6805 0.2529 1.06 0.6312 0.3300 1.89 0.6407 0.3470 1.96

gSCAD1 0.6822 0.4418 0.91 0.5988 0.8094 2.03 0.5475 0.8495 2.07

gSCAD2 0.6839 0.2353 1.09 0.6443 0.2820 1.90 0.6605 0.3054 1.98

gLASSO1 0.6162 0.4011 10.73 0.5066 0.4421 7.49 0.4564 0.4619 8.42

gLASSO2 0.6206 0.3403 10.64 0.5490 0.3401 7.02 0.6116 0.3380 5.83

0.05 gMCP1 0.4987 0.7812 7.08 0.3585 0.9274 5.13 0.3221 0.9702 5.98

gMCP2 0.5475 0.5630 8.00 0.4360 0.5949 4.33 0.3840 0.6156 3.25

gSCAD1 0.5277 0.7846 7.22 0.3763 0.9526 4.90 0.3389 0.9841 5.93

gSCAD2 0.5868 0.4376 10.30 0.4915 0.6878 5.88 0.4679 0.7449 4.41

4.3 Real data analysis

The ozone data, which is available from the R library mlbench, has been analyzed by Breiman and

Friedman (1985), Hastie and Tibshirani (1990), and Lin and Zhang (2006). It consists of the daily mea-

surements of ozone concentration (maximum one hour average) and meteorological quantities, measured

in the Los Angeles basin for 366 days of 1976. We exclude a variable with too many missing values and

36 observations including missing values. We consider ozone concentration as the response variable and

the other eleven variables as the covariates. The covariates used in our study are:

DoW: Day of week.

Month: Month.

DoM: Day of month.

vh: 500 millibar pressure height (m) measured at Vandenberg AFB.

wind: Wind speed (mph) at Los Angeles International Airport (LAX).

hum: Humidity (%) at LAX.

temp: Temperature (degrees F) measured at Sandburg, CA.

ibh: Inversion base height (feet) at LAX.

dpg: Pressure gradient (mm Hg) from LAX to Daggett, CA.

ibt: Inversion base temperature (degrees F) at LAX.

vis: Visibility (miles) measured at LAX.

Among these variables, there are three categorical variables and eight continuous variables. Since

Month and DoM have values of 12 and 31 different ordered levels, respectively, we regard these two covari-

ates as being continuous. Although values of DoW are ordered, the day of week effect are related to human

activity, which are supposed to change discretely. Hence, we keep DoW as a categorical variable, which
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is expanded to 6 dummy covariates. We are interested in finding the relationship between ozone con-

centration and meteorological quantities. The Ozone data set is well known to have a nonlinear relation

of covariates and response variable. To assess the nonlinear effects, we use the third order polynomial

model. For each continuous variable, we consider the third polynomial expansion. Thus, the problem

of selecting relevant variables becomes the problem of selecting groups of variables after the expansion.

This problem is also considered by Lin and Zhang (2006) and Kim et al. (2006)

Table 4: Comparison of the proposed and GCD algorithms based on 100 random sampling of the Ozone

data

Method Cost Time #Group

gLASSO1 7.495 0.067 10.40

gLASSO2 8.027 0.061 10.97

gMCP1 7.538 0.089 8.75

gMCP2 7.983 0.081 8.64

gSCAD1 7.772 0.085 8.96

gSCAD2 8.339 0.081 9.52

Table 4 shows the efficiency of the proposed algorithms compared to GCD algorithms. The results are

obtained by 100 random sampling of 2/3 observations from the data set. For each data set, the optimal

values of regularization parameters are chosen by the BIC with the generalized degrees of freedom in

Section 3.3. Similarly to the results of the simulations, the proposed algorithms provide smaller cost

values and are not unacceptably slow compared to the GCD algorithms.

5 Concluding remarks

We proposed the optimization algorithm for nonconvex group penalties, which is a hybrid of the CCCP

and group LASSO algorithm. The algorithm can be applied to a wide class of nonconvex group penalties

regardless of the form of the design matrix.

We only consider the selection of groups, but not variable selection in the selected groups. It would be

valuable to apply our algorithm for selecting groups and individual variables, simultaneously. We leave

this problem as a future work.
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