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Introduction

There has been very little work on developing topic models using
undirected graphical models.

Several authors used RBMs in which word-count vectors are
modeled as a Poisson distribution.

They are unable to properly deal with documents of different
lengths.

Salakhutdinov and Hinton (2007) proposed a Constrained
Poisson model that would ensure that the mean Poisson rates
across all words sum up to the length of the document.

The introduced model no longer defines a proper probability
distribution over the word counts.
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Replicated Softmax
(Hinton and Salakhutdinov, 2009)

e K is the dictionary size and D is the document length.

e Let VbeaD x K observed binary matrix with vi-‘ = 1if i" word
takes on k" value of the dictionary.

e Leth € {0, 1}F be binary hidden features.
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Replicated Softmax

(Hinton and Salakhutdinov, 2009)
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where V¢ = E?: | V¥ denotes the count for the k™ word.

e Scaling up by D is crucial and allows hidden topic units to
behave sensibly when dealing with documents of different
lenoths. 4/14



Replicated Softmax
(Hinton and Salakhutdinov, 2009)

e The marginal probability of V is

P(V) Zexp{ E(V,h)} where Z = " exp{—E(V,h)}.

V,h

e The conditional distributions are

K
P(h; =1V) = o(Da;j+ > _v*W}),
k=1

v VEh ~ Multinomial(D, p1, . . ., px)

where
exp(b* + ZF hiWF)

SR exp(bt + S W)

Pk =
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Learning

* Given a collection of N documents {V,,}"_,, the derivative of
log-likelihood w.r.t. W;‘ takes the form:

N
1 0log P(V,)
N Z 8Wk = EPdata [vkhj] - IEPModel [vkh]]

J

n=1

where Pgya(h, V) = P(h|V) % 3, v, (V).

e “Contrastive Divergence” method is used to estimate
k
EPModel [V hj]'
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Over-Replicated Softmax Model

(Srivastava, Salakhutdinov and Hinton, 2013)

The Over-Replicated Softmax model is a family of two hidden
layer Deep Boltzmann Machines (DBM).

K is the dictionary size and D is the document size.

Let V be a D x K observed binary matrix with vy = 1 if i word
takes on k" value of the dictionary.

Leth() € {0, 1}¥ be binary hidden features.

Let H® be a M x K observed binary matrix with h,(nzlz = 1if m™®
hidden unit takes on k™" value of the dictionary.
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Over-Replicated Softmax Model

(Srivastava, Salakhutdinov and Hinton, 2013)
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where vy = ElD: , Vit denotes the count for the k™ word in the input

and h,gz) = Z?L] hf,zk) denotes the count for the k™ word in the second hidden layer.
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Over-Replicated Softmax Model

(Srivastava, Salakhutdinov and Hinton, 2013)

e The marginal probability of V is

P(V):% > exp{—E(V,h) H®)}.

h() H?)

o Given a collection of N documents {V,,}"V_,, the derivative of

log-likelihood w.r.t. Wj; takes the form:

n=1°

N
1 dlog P(V,) @)\ (1) @)\, (1)
N; 6‘/‘/]]( EPdata[(vk+h )h ] IE'P‘M<)del[(vk—+—h )h] ]

where Py (h), H?), V) = P(h(D HO|V) L 3= Sy (V).

e Exact maximum likelihood learning is intractable.
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Learning

¢ Consider any approximating distribution Q( H(z) ),
parameterized by u, for the posterior P(h ]V

e Then the log-likelihood has the following variational lower
bound :

logP(V) > > 0" H|u)log P, H®, V) + #(Q).

h() H(?)

o We approximate P(h('), H®)|V) with a fully factorized
distribution :

M
e UISN ;| qu i) TT 21?1
i=1

where ¢ is a Bernoulli distribution and ¢; is a multinomial
distribution with a single trial.
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Learning

¢ In this case, the variational lower bound takes a simple form :

log P(V) > (v + Mp@TYWu) —logZ + H(Q)

where v = (vi,...,vg)T.

e For each training example, we maximize this lower bound w.r.t.
u for fixed W, which results in the fixed-point equations:

Zk 1 Jk(Vk+M“(2))
L+ jk(vk+MM( ))
M]({Z) - eXP(Z, 1 Jk'u’j )() '

zqzleXP(ijl Wigh; )

i
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Learning

1. Randomly initialize v°, h(D0 H®0 and WO,

2. For t = 0 to 7(# of iterations)
(a) For each training example V,,,n = 1 to N
o Randomly initialize £, 1® and run mean-field updates until
convergence.
e Set p,fll) = p,(l) and uff) = [,l,<2>.
(b) Obtain a new state V', h()-+1 H®+! by running a k-step
Gibbs sampler, initialized at V/, h():* H®),
(c) Update
j T
W= Wt (2 (k) ()

n=1

_ (;,t+1 n B(Z),t+l) (ﬁ(l),t+1)T)

where v = (vi,...,v) andh® = (A% .. ).
(d) Decrease o;.
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Pretraining

h®[24]36]20] i

M = 80 < ; i
D = 100 hmO O {p+M w
v [25]a0]35] .

If we were given the initial state vector h®, we could train this DBM using
one-step contrastive divergence with mean-field reconstructions of both v and
h®.

Since we are not given the initial state, one option is to set h® = (M/D)v.
Then the conditional distribution P(h{" = 1|v,h®) = o(W (v + h®))
becomes P(hj(1> =1|v) = o (Z Wv).
Mean-field reconstructions of v and h® are

v=(Dpi,...,Dpx), h® = (Mp,,...,Mpx),
where p; = exp(h(l)TW,k)/( Z;(:] exp(h(l)TW,q))

One-step contrastive divergence is exactly the same as training a RBM with the
bottom-up weights scaled by a factor of (D + M) /M.
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Experimental Results

e The average test perplexity per word was estimated as

N
1 log P(V,)
exp - — E e
N D,
n=1
e Replicated Softmax
Data set Number of docs K D St. Dev. Avg. Test perplexity per word (in nats)
Train Test LDA-50 LDA-200 R.Soft-50 Unigram
NIPS 1.690 50 13,649  98.0 2453 3576 3391 3405 4385
20-news  11.314 7.531 2.000 518 70.8 1091 1058 953 1335
Reuters 794,414 10.000 10,000 94.6 69.3 1437 1142 988 2208
e Over-Replicated Softmax
Perplexities
Unigram 1335 2208
Replicated Softmax 965 1081
Over-Rep. Softmax (M = 50) 961 1076
Over-Rep. Softmax (M = 100) 958 1060

— All models use 128 topics.
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