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Introduction

• There has been very little work on developing topic models using
undirected graphical models.

• Several authors used RBMs in which word-count vectors are
modeled as a Poisson distribution.

• They are unable to properly deal with documents of different
lengths.

• Salakhutdinov and Hinton (2007) proposed a Constrained
Poisson model that would ensure that the mean Poisson rates
across all words sum up to the length of the document.

• The introduced model no longer defines a proper probability
distribution over the word counts.
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Replicated Softmax
(Hinton and Salakhutdinov, 2009)

• K is the dictionary size and D is the document length.

• Let V be a D× K observed binary matrix with vk
i = 1 if ith word

takes on kth value of the dictionary.

• Let h ∈ {0, 1}F be binary hidden features.
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Replicated Softmax
(Hinton and Salakhutdinov, 2009)

E(V,h) = −
D∑

i=1

F∑
j=1

K∑
k=1

Wk
j hjvk

i −
D∑

i=1

K∑
k=1

vk
i bk − D

F∑
j=1

hjaj

= −
F∑

j=1

K∑
k=1

Wk
j hjvk −

K∑
k=1

vkbk − D
F∑

j=1

hjaj,

where vk =
∑D

i=1 vk
i denotes the count for the kth word.

• Scaling up by D is crucial and allows hidden topic units to
behave sensibly when dealing with documents of different
lengths. 4 / 14



Replicated Softmax
(Hinton and Salakhutdinov, 2009)

• The marginal probability of V is

P(V) =
1
Z

∑
h

exp{−E(V,h)} where Z =
∑
V,h

exp{−E(V,h)}.

• The conditional distributions are

P(hj = 1|V) = σ
(
Daj +

K∑
k=1

vkWk
j
)
,

v1, . . . , vK |h ∼ Multinomial(D, p1, . . . , pK)

where

pk =
exp(bk +

∑F
j=1 hjWk

j )∑K
q=1 exp(bq +

∑F
j=1 hjW

q
j )
.
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Learning

• Given a collection of N documents {Vn}N
n=1, the derivative of

log-likelihood w.r.t. Wk
j takes the form:

1
N

N∑
n=1

∂ log P(Vn)

∂Wk
j

= EPdata [v
khj]− EPModel [v

khj]

where Pdata(h,V) = P(h|V) 1
N

∑
n δVn(V).

• “Contrastive Divergence” method is used to estimate
EPModel [v

khj].
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Over-Replicated Softmax Model
(Srivastava, Salakhutdinov and Hinton, 2013)

• The Over-Replicated Softmax model is a family of two hidden
layer Deep Boltzmann Machines (DBM).

• K is the dictionary size and D is the document size.

• Let V be a D× K observed binary matrix with vik = 1 if ith word
takes on kth value of the dictionary.

• Let h(1) ∈ {0, 1}F be binary hidden features.

• Let H(2) be a M × K observed binary matrix with h(2)mk = 1 if mth

hidden unit takes on kth value of the dictionary.
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Over-Replicated Softmax Model
(Srivastava, Salakhutdinov and Hinton, 2013)

E(V, h(1),H(2)) = −
F∑

j=1

K∑
k=1

Wjkh(1)
j

(
vk + h(2)

k

)
−

K∑
k=1

(
vk + h(2)

k

)
bk

−(M + D)
F∑

j=1

h(1)
j aj

where vk =
∑D

i=1 vik denotes the count for the kth word in the input

and h(2)
k =

∑M
i′=1 h(2)

i′k denotes the count for the kth word in the second hidden layer.
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Over-Replicated Softmax Model
(Srivastava, Salakhutdinov and Hinton, 2013)

• The marginal probability of V is

P(V) =
1
Z

∑
h(1),H(2)

exp{−E(V,h(1),H(2))}.

• Given a collection of N documents {Vn}N
n=1, the derivative of

log-likelihood w.r.t. Wjk takes the form:

1
N

N∑
n=1

∂ log P(Vn)

∂Wjk
= EPdata [

(
vk+h(2)k

)
h(1)j ]−EPModel [

(
vk+h(2)k

)
h(1)j ]

where Pdata(h(1),H(2),V) = P(h(1),H(2)|V) 1
N

∑
n δVn(V).

• Exact maximum likelihood learning is intractable.
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Learning

• Consider any approximating distribution Q(h(1),H(2)|µ),
parameterized by µ, for the posterior P(h(1),H(2)|V).

• Then the log-likelihood has the following variational lower
bound :

log P(V) ≥
∑

h(1),H(2)

Q(h(1),H(2)|µ) log P(h(1),H(2),V) +H(Q).

• We approximate P(h(1),H(2)|V) with a fully factorized
distribution :

QMF(h(1),H(2)|µ) =
F∏

j=1

q1(h
(1)
j |µ

(1)
j )

M∏
i=1

q2(h
(2)
i |µ

(2)
1 , . . . , µ

(2)
K )

where q1 is a Bernoulli distribution and q2 is a multinomial
distribution with a single trial.

10 / 14



Learning

• In this case, the variational lower bound takes a simple form :

log P(V) ≥
(
vT + Mµ(2)T)Wµ(1) − log Z +H(Q)

where v = (v1, . . . , vK)
T .

• For each training example, we maximize this lower bound w.r.t.
µ for fixed W, which results in the fixed-point equations:

µ
(1)
j ←

∑K
k=1 Wjk

(
vk + Mµ(2)k

)
1 +

∑K
k=1 Wjk

(
vk + Mµ(2)k

) ,
µ
(2)
k ←

exp
(∑F

j=1 Wjkµ
(1)
j

)∑K
q=1 exp

(∑F
j=1 Wjqµ

(1)
j

) .
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Learning

1. Randomly initialize ṽ0, h̃(1),0, H̃(2),0 and W0.

2. For t = 0 to τ (# of iterations)
(a) For each training example Vn, n = 1 to N

• Randomly initialize µ(1),µ(2) and run mean-field updates until
convergence.

• Set µ(1)
n = µ(1) and µ(2)

n = µ(2).
(b) Obtain a new state Ṽt+1, h̃(1),t+1, H̃(2),t+1 by running a k-step

Gibbs sampler, initialized at Ṽt, h̃(1),t, H̃(2),t.
(c) Update

Wt+1 = Wt + αt

(
1
N

N∑
n=1

(
vn + µ(2)

n

)(
µ(1)

n

)T

−
(
ṽt+1 + h̃(2),t+1)(h̃(1),t+1)T

)
where v = (v1, . . . , vk) and h(2) = (h(2)

1 , . . . , h(2)
K ).

(d) Decrease αt.
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Pretraining

• If we were given the initial state vector h(2), we could train this DBM using
one-step contrastive divergence with mean-field reconstructions of both v and
h(2).

• Since we are not given the initial state, one option is to set h(2) = (M/D)v.

• Then the conditional distribution P(h(1)
j = 1|v, h(2)) = σ

(
W
(
v + h(2)))

becomes P(h(1)
j = 1|v) = σ

(
D+M

D Wv
)
.

• Mean-field reconstructions of v and h(2) are

v = (Dp1, . . . ,DpK), h(2) = (Mp1, . . . ,MpK),

where pk = exp(h(1)T W,k)/
(∑K

q=1 exp(h(1)T W,q)
)

• One-step contrastive divergence is exactly the same as training a RBM with the
bottom-up weights scaled by a factor of (D + M)/M.
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Experimental Results

• The average test perplexity per word was estimated as

exp
(
− 1

N

N∑
n=1

log P(Vn)

Dn

)
.

• Replicated Softmax

• Over-Replicated Softmax

– All models use 128 topics.
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