Undirected Topic Models

Kuhwan Jeong ¹

¹Department of Statistics, Seoul National University, South Korea

December, 2016

Introduction

- There has been very little work on developing topic models using undirected graphical models.
- Several authors used RBMs in which word-count vectors are modeled as a Poisson distribution.
- They are unable to properly deal with documents of different lengths.
- Salakhutdinov and Hinton (2007) proposed a Constrained Poisson model that would ensure that the mean Poisson rates across all words sum up to the length of the document.
- The introduced model no longer defines a proper probability distribution over the word counts.

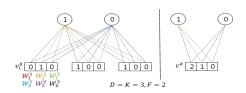
Replicated Softmax

(Hinton and Salakhutdinov, 2009)

- *K* is the dictionary size and *D* is the document length.
- Let **V** be a $D \times K$ observed binary matrix with $v_i^k = 1$ if i^{th} word takes on k^{th} value of the dictionary.
- Let $\mathbf{h} \in \{0, 1\}^F$ be binary hidden features.

Replicated Softmax

(Hinton and Salakhutdinov, 2009)



$$E(\mathbf{V}, \mathbf{h}) = -\sum_{i=1}^{D} \sum_{j=1}^{F} \sum_{k=1}^{K} W_j^k h_j v_i^k - \sum_{i=1}^{D} \sum_{k=1}^{K} v_i^k b^k - D \sum_{j=1}^{F} h_j a_j$$

$$= -\sum_{j=1}^{F} \sum_{k=1}^{K} W_j^k h_j v^k - \sum_{k=1}^{K} v^k b^k - D \sum_{j=1}^{F} h_j a_j,$$

where $v^k = \sum_{i=1}^{D} v_i^k$ denotes the count for the k^{th} word.

 Scaling up by D is crucial and allows hidden topic units to behave sensibly when dealing with documents of different lengths.

Replicated Softmax

(Hinton and Salakhutdinov, 2009)

• The marginal probability of **V** is

$$P(\mathbf{V}) = \frac{1}{Z} \sum_{\mathbf{h}} \exp\{-E(\mathbf{V}, \mathbf{h})\} \text{ where } Z = \sum_{\mathbf{V}, \mathbf{h}} \exp\{-E(\mathbf{V}, \mathbf{h})\}.$$

• The conditional distributions are

$$P(h_j = 1 | \mathbf{V}) = \sigma(Da_j + \sum_{k=1}^K v^k W_j^k),$$

$$v^1, \dots, v^K | \mathbf{h} \sim Multinomial(D, p_1, \dots, p_K)$$

where

$$p_k = \frac{\exp(b^k + \sum_{j=1}^F h_j W_j^k)}{\sum_{q=1}^K \exp(b^q + \sum_{j=1}^F h_j W_j^q)}.$$

• Given a collection of N documents $\{V_n\}_{n=1}^N$, the derivative of log-likelihood w.r.t. W_i^k takes the form:

$$\frac{1}{N} \sum_{n=1}^{N} \frac{\partial \log P(\mathbf{V}_n)}{\partial W_j^k} = \mathbb{E}_{P_{\text{data}}}[v^k h_j] - \mathbb{E}_{P_{\text{Model}}}[v^k h_j]$$

where
$$P_{\text{data}}(\mathbf{h}, \mathbf{V}) = P(\mathbf{h}|\mathbf{V}) \frac{1}{N} \sum_{n} \delta_{\mathbf{V}_{n}}(\mathbf{V})$$
.

• "Contrastive Divergence" method is used to estimate $\mathbb{E}_{P_{\text{Model}}}[v^k h_j]$.

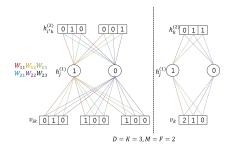
Over-Replicated Softmax Model

(Srivastava, Salakhutdinov and Hinton, 2013)

- The Over-Replicated Softmax model is a family of two hidden layer Deep Boltzmann Machines (DBM).
- *K* is the dictionary size and *D* is the document size.
- Let **V** be a $D \times K$ observed binary matrix with $v_{ik} = 1$ if i^{th} word takes on k^{th} value of the dictionary.
- Let $\mathbf{h}^{(1)} \in \{0, 1\}^F$ be binary hidden features.
- Let $\mathbf{H}^{(2)}$ be a $M \times K$ observed binary matrix with $h_{mk}^{(2)} = 1$ if m^{th} hidden unit takes on k^{th} value of the dictionary.

Over-Replicated Softmax Model

(Srivastava, Salakhutdinov and Hinton, 2013)



$$E(\mathbf{V}, \mathbf{h}^{(1)}, \mathbf{H}^{(2)}) = -\sum_{j=1}^{F} \sum_{k=1}^{K} W_{jk} h_{j}^{(1)} (v_{k} + h_{k}^{(2)}) - \sum_{k=1}^{K} (v_{k} + h_{k}^{(2)}) b_{k}$$

$$-(M+D) \sum_{j=1}^{F} h_{j}^{(1)} a_{j}$$

where $v_k = \sum_{i=1}^{D} v_{ik}$ denotes the count for the k^{th} word in the input and $h_k^{(2)} = \sum_{i'=1}^{M} h_{i'k}^{(2)}$ denotes the count for the k^{th} word in the second hidden layer.

Over-Replicated Softmax Model

(Srivastava, Salakhutdinov and Hinton, 2013)

• The marginal probability of V is

$$P(\mathbf{V}) = \frac{1}{Z} \sum_{\mathbf{h}^{(1)}, \mathbf{H}^{(2)}} \exp\{-E(\mathbf{V}, \mathbf{h}^{(1)}, \mathbf{H}^{(2)})\}.$$

• Given a collection of N documents $\{V_n\}_{n=1}^N$, the derivative of log-likelihood w.r.t. W_{ik} takes the form:

$$\frac{1}{N} \sum_{n=1}^{N} \frac{\partial \log P(\mathbf{V}_n)}{\partial W_{jk}} = \mathbb{E}_{P_{\text{data}}}[\left(v_k + h_k^{(2)}\right) h_j^{(1)}] - \mathbb{E}_{P_{\text{Model}}}[\left(v_k + h_k^{(2)}\right) h_j^{(1)}]$$

where
$$P_{\text{data}}(\mathbf{h}^{(1)}, \mathbf{H}^{(2)}, \mathbf{V}) = P(\mathbf{h}^{(1)}, \mathbf{H}^{(2)}|\mathbf{V}) \frac{1}{N} \sum_{n} \delta_{\mathbf{V}_{n}}(\mathbf{V}).$$

Exact maximum likelihood learning is intractable.

- Consider any approximating distribution $Q(\mathbf{h}^{(1)}, \mathbf{H}^{(2)}|\boldsymbol{\mu})$, parameterized by $\boldsymbol{\mu}$, for the posterior $P(\mathbf{h}^{(1)}, \mathbf{H}^{(2)}|\mathbf{V})$.
- Then the log-likelihood has the following variational lower bound:

$$\log P(\mathbf{V}) \ge \sum_{\mathbf{h}^{(1)}, \mathbf{H}^{(2)}} Q(\mathbf{h}^{(1)}, \mathbf{H}^{(2)} | \boldsymbol{\mu}) \log P(\mathbf{h}^{(1)}, \mathbf{H}^{(2)}, \mathbf{V}) + \mathcal{H}(Q).$$

• We approximate $P(\mathbf{h}^{(1)}, \mathbf{H}^{(2)}|\mathbf{V})$ with a fully factorized distribution :

$$Q^{MF}(\mathbf{h}^{(1)}, \mathbf{H}^{(2)} | \boldsymbol{\mu}) = \prod_{i=1}^{F} q_1(h_j^{(1)} | \mu_j^{(1)}) \prod_{i=1}^{M} q_2(h_i^{(2)} | \mu_1^{(2)}, \dots, \mu_K^{(2)})$$

where q_1 is a Bernoulli distribution and q_2 is a multinomial distribution with a single trial.

• In this case, the variational lower bound takes a simple form :

$$\log P(\mathbf{V}) \ge (\mathbf{v}^T + M\boldsymbol{\mu}^{(2)T})\mathbf{W}\boldsymbol{\mu}^{(1)} - \log Z + \mathcal{H}(Q)$$
 where $\mathbf{v} = (v_1, \dots, v_K)^T$.

For each training example, we maximize this lower bound w.r.t. μ for fixed W, which results in the fixed-point equations:

$$\mu_{j}^{(1)} \leftarrow \frac{\sum_{k=1}^{K} W_{jk} (v_{k} + M \mu_{k}^{(2)})}{1 + \sum_{k=1}^{K} W_{jk} (v_{k} + M \mu_{k}^{(2)})},$$

$$\mu_{k}^{(2)} \leftarrow \frac{\exp\left(\sum_{j=1}^{F} W_{jk} \mu_{j}^{(1)}\right)}{\sum_{q=1}^{K} \exp\left(\sum_{j=1}^{F} W_{jq} \mu_{j}^{(1)}\right)}.$$

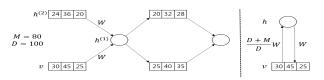
- 1. Randomly initialize $\tilde{\mathbf{v}}^0$, $\tilde{\mathbf{h}}^{(1),0}$, $\tilde{\mathbf{H}}^{(2),0}$ and \mathbf{W}^0 .
- 2. For t = 0 to τ (# of iterations)
 - (a) For each training example V_n , n = 1 to N
 - Randomly initialize $\mu^{(1)}$, $\mu^{(2)}$ and run mean-field updates until convergence.
 - Set $\mu_n^{(1)} = \mu^{(1)}$ and $\mu_n^{(2)} = \mu^{(2)}$.
 - (b) Obtain a new state $\tilde{\mathbf{V}}^{t+1}$, $\tilde{\mathbf{h}}^{(1),t+1}$, $\tilde{\mathbf{H}}^{(2),t+1}$ by running a k-step Gibbs sampler, initialized at $\tilde{\mathbf{V}}^t$, $\tilde{\mathbf{h}}^{(1),t}$, $\tilde{\mathbf{H}}^{(2),t}$.
 - (c) Update

$$\mathbf{W}^{t+1} = \mathbf{W}^t + \alpha_t \left(\frac{1}{N} \sum_{n=1}^N \left(\mathbf{v}_n + \boldsymbol{\mu}_n^{(2)} \right) \left(\boldsymbol{\mu}_n^{(1)} \right)^T - \left(\tilde{\mathbf{v}}^{t+1} + \tilde{\mathbf{h}}^{(2),t+1} \right) \left(\tilde{\mathbf{h}}^{(1),t+1} \right)^T \right)$$

where
$$\mathbf{v} = (v_1, \dots, v_k)$$
 and $\mathbf{h}^{(2)} = (h_1^{(2)}, \dots, h_K^{(2)})$.

(d) Decrease α_t .

Pretraining



- If we were given the initial state vector h⁽²⁾, we could train this DBM using
 one-step contrastive divergence with mean-field reconstructions of both v and
 h⁽²⁾.
- Since we are not given the initial state, one option is to set $\mathbf{h}^{(2)} = (M/D)\mathbf{v}$.
- Then the conditional distribution $P(h_j^{(1)} = 1 | \mathbf{v}, \mathbf{h}^{(2)}) = \sigma(\mathbf{W}(\mathbf{v} + \mathbf{h}^{(2)}))$ becomes $P(h_j^{(1)} = 1 | \mathbf{v}) = \sigma(\frac{D+M}{D}\mathbf{W}\mathbf{v})$.
- Mean-field reconstructions of \mathbf{v} and $\mathbf{h}^{(2)}$ are

$$\mathbf{v} = (Dp_1, \dots, Dp_K), \ \mathbf{h}^{(2)} = (Mp_1, \dots, Mp_K),$$

where $p_k = \exp(h^{(1)T}\mathbf{W}_{,k})/(\sum_{q=1}^K \exp(h^{(1)T}\mathbf{W}_{,q}))$

• One-step contrastive divergence is exactly the same as training a RBM with the bottom-up weights scaled by a factor of (D+M)/M.

Experimental Results

The average test perplexity per word was estimated as

$$\exp\bigg(-\frac{1}{N}\sum_{n=1}^N\frac{\log P(\mathbf{V}_n)}{D_n}\bigg).$$

Replicated Softmax

Data set	Number of docs		K	\bar{D}	St. Dev.	Avg. Test perplexity per word (in nats)			
	Train	Test				LDA-50	LDA-200	R. Soft-50	Unigram
NIPS	1,690	50	13,649	98.0	245.3	3576	3391	3405	4385
20-news	11,314	7,531	2,000	51.8	70.8	1091	1058	953	1335
Reuters	794,414	10,000	10,000	94.6	69.3	1437	1142	988	2208

Over-Replicated Softmax

Perplexities						
Unigram	1335	2208				
Replicated Softmax	965	1081				
Over-Rep. Softmax $(M = 50)$	961	1076				
Over-Rep. Softmax $(M = 100)$	958	1060				

All models use 128 topics.