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Canonical Correlation Analysis (Hotelling, 1936)

Let (X,Y ) ∈ Rp1 × Rp2 denote random vectors with
covariances (Σ11,Σ22) and cross-covariance Σ12.

CCA finds pairs of linear projections of the two views,
(v′X,u′Y ) that are maximally correlated:

(v∗, u∗) = argmax
v,u

corr(v′X,u′Y )

= argmax
v,u

v′Σ12u√
v′Σ11vu′Σ22u

= argmax
v′Σ11v=u′Σ22u=1

v′Σ12u



Canonical Correlation Analysis

When finding multiple pairs of vectors (vi, ui), subsequent
projections are also constrained to be uncorrelated with previous
ones:

viΣ11v
j = uiΣ22u

j = 0 for i < j.

We obtain the following formulation to identify the top
k ≤ min(p1, p2) projections:

maximize: tr(V ′Σ12U)

subject to: V ′Σ11V = U ′Σ22U = I.

where V ∈ Rp1×k and U ∈ Rp2×k.



Canonical Correlation Analysis

Define T1 , Σ−1
11 Σ12Σ−1

22 Σ21 and T2 , Σ−1
22 Σ21Σ−1

11 Σ12.

Then, the optimum objective value is the sum of the top k
eigenvalues of T1 (or T2).

Let Vk be the matrix of the first k eigenvectors of T1 and Uk be
the matrix of the first k eigenvectors of T2.

Then, the optimum is attained at (V ∗, U∗) = (Vk, Uk).



The Two-Block Mode B of Wold’s Algorithm
(Wold, 1975; Wegelin, 2000)

Given the centered data X ∈ Rn×p1 and Y ∈ Rn×p2 ,

T̂1 = (X′X)−1(X′Y)(Y′Y)−1(Y′X),

T̂2 = (Y′Y)−1(Y′X)(X′X)−1(X′Y).

We can obtain the eigenvectors and eigenvalues of T̂1 and T̂2 by
power method.

It can be viewed as an iterative projection procedure.



The Two-Block Mode B of Wold’s Algorithm

Let ω = Yu and ξ = Xv.
Wold’s Algorithm :

1 r ← 1.
2 Let X(r) ← X and Y(r) ← Y.
3 Standardize X(r) and Y(r).
4 Set k ← 0.
5 Assign arbitrary normalized values v̂(0)r and û(0)r .
6 Estimate ξr, ωr, vr and ur iteratively, as follows:

Repeat
1 k ← k + 1.

2 ξ̂kr ← X(r)v̂
(k−1)
r and ω̂k

r ← Y(r)û
(k−1)
r

3 Compute v̂(k)
r and û(k)

r by performing multiple regression:

û
(k)
r = argmin

u
(k)
r

|ξ̂kr −Y
(r)
u
(k)
r |

2

v̂
(k)
r = argmin

v
(k)
r

|ω̂k
r −X

(r)
v
(k)
r |2

4 Normalize v̂(k)
r and û(k)

r .



The Two-Block Mode B of Wold’s Algorithm

Wold’s algorithm(cont’)
7 Fit the simple linear regression :

X
(r)
j ≈ γ̂j ξ̂r, j = 1, ..., p1

Y
(r)
j ≈ θ̂j ω̂r, j = 1, ..., p2.

8 Determine the residual matrices of X(r) and Y(r).

X
(r+1) ← X

(r) − ξ̂r γ̂′

Y
(r+1) ← Y

(r) − ω̂r θ̂
′

9 r ← r + 1 and return to Step 3.



Penalized CCA(Waaijenborg et al., 2008)

Penalized linear regression techniques can be easily adapted to
Wold’s algorithm, by modifying step 6-3.

We used the elastic net.

Selection of the penalty parameters : minimize ∆cor.

∆cor =

∑k
j=1 ||cor(X−j v̂−j ,Y−j û−j)| − |cor(Xj v̂

−j ,Yj û
−j)||

k



Sparse CCA via Precision Adjusted Iterative Thresholding
(Chen et al., 2013)

Waaijenborg(2008), Wiesel et al.(2008) :
based on heuristics to avoid the non-convex nature of CCA
problem.
there is no guarantee whether these algorithms would lead to
consistent estimators.

Witten et al.(2009), Parkhomenko et al.(2009) :
using diagonal matrix or even identity matrix to approximate the
unknown matrices (Σ−11 ,Σ−12 ).



Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 1.
When Σ12 is of rank 1, the solution (up to sign jointly) of CCA
problem is (θ, η) if and only if the covariance structure between X
and Y can be written as

Σ12 = λΣ11θη
TΣ22

where 0 < λ ≤ 1, θTΣ11θ = 1 and ηTΣ22η = 1. In other words, the
correlation between aTX and bTY are maximized by
corr(θTX, ηTY ), and λ is the canonical correlation between X and Y .



Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 2.
For general Σ12 with rank r ≥ 1, the solution (up to sign jointly) of
CCA problem is (θ1, η1) if and only if the covariance structure
between X and Y can be written as

Σ12 = λΣ11

( r∑
i=1

λiθiη
T
i

)
Σ22

where λ1 > λ2 > ... > λr > 0, θTi Σ11θj = I(i = j) = ηTi Σ22ηj .



Sparse CCA via Precision Adjusted Iterative Thresholding

We propose a probabilistic model of (X,Y ), so that the
canonical directions (θ, η) are explicitly modeled in the joint
distribution of (X,Y ).

The Single Canonical Pair Model(
X
Y

)
∼ N

((
0
0

)
,

(
Σ11 λΣ11θη

TΣ22

λΣ22ηθ
TΣ11 Σ22

))
with Σ11 > 0,Σ22 > 0, θTΣ11θ = ηTΣ22η = 1 and 0 < λ ≤ 1.



Sparse CCA via Precision Adjusted Iterative Thresholding

Algorithm : CAPIT

Input : Sample covariance matrices Σ̂12;
Estimators of precision matrix Ω̂11, Ω̂22;
Initialization pair α(0), β(0);
Thresholding level γ1, γ2.
Output : Canonical direction estimator α(∞), β(∞).
Set Â = Ω̂11Σ̂12Ω̂22;
repeat

Right Multiplication: ωl,(i) = Âβ(i−1);

Left Thresholding : ωl,(i)th = T (ωl,(i), γ1);

Left Normalization : α(i) = ω
l,(i)
th /‖ωl,(i)th ‖;

Left Multiplication : ωr,(i) = α(i)Â;

Right Thresholding : ωr,(i)th = T (ω
r,(i)
th , γ2);

Right Normalization : β(i) = ω
r,(i)
th /‖ωr,(i)th ‖;

until Convergence of α(i) and β(i).



Deep Canonical Correlation Analysis (Andrew et al., 2013)



Deep Canonical Correlation Analysis

If θ1 is the vector of all parameters of the first view, and similarly
for θ2, then

(θ∗1, θ
∗
2) = argmax

(θ1,θ2)
corr(f(X; θ1), g(Y ; θ2))

H ∈ Rn×o,K ∈ Rn×o : data matrices with top-level
representation.
H̄ , K̄ : centered data matrices.
Define Σ̂12 = 1

n−1H̄
′K̄ and Σ̂11 = 1

n−1H̄
′H̄ + r1I (resp. Σ̂22).

If we take k = o, then

corr(H,K) = ‖T‖tr = tr(T ′T )1/2

where T = Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22 .



Deep Canonical Correlation Analysis

Optimizing this quantity using gradient-based optimization.

If the singular decomposition of T is T = UDV ′ then,

∂corr(H,K)

∂H
=

1

n− 1
(2∆11H̄ + ∆12K̄).

where

∆12 = Σ̂
−1/2
11 UV ′Σ̂

−1/2
22

and

∆11 = −1

2
Σ̂
−1/2
11 UDU ′Σ̂

−1/2
11

and ∂corr(H,K)/∂K has a symmetric expression.



Deep Canonical Correlation Analysis

The correlation objective is a function of the entire training set
that does not decompose into a sum over data points.

Full-match optimization using the L-BFGS second-order
optimization method.

Pre-training : denoising autoencoder

Non-linear function : a novel non-saturating sigmoid function
based on the cube root.



Deep Canonical Correlation Analysis

If g : R→ R is the function g(y) = y3/3 + y, then our function
is s(x) = g−1(x).



Deep Canonical Correlation Analysis

s is not bounded, and its derivative falls off much more gradually
with x.

We hypothesize that these properties make s better-suited for
batch optimization with second-order methods.
The derivative of s is a simple function of its value.

s′(x) = (s2(x) + 1)−1.

To compute s(x), we use Newton’s method.


