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Canonical Correlation Analysis (Hotelling, 1936)

@ Let (X,Y) € RP' x RP2 denote random vectors with
covariances (11, X92) and cross-covariance Xj9.

@ CCA finds pairs of linear projections of the two views,
(v' X, u'Y) that are maximally correlated:

(v*,u*) = argmaxcorr(v'X,u'Y)
v
v' Y190
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Canonical Correlation Analysis

e When finding multiple pairs of vectors (v, u*), subsequent
projections are also constrained to be uncorrelated with previous
ones:

’Uizn’l)j = UiZQQU‘j =0fori < j

@ We obtain the following formulation to identify the top
k < min(p, p2) projections:

maximize: tr(V'X12U)
subject to: V'ELV =U'S»U =1.

where V € RP1*F and U € RP2%F,



Canonical Correlation Analysis

o Define T1 £ 7' $19%55) Yo1 and Ty £ X5,/ Y01 077 T1o.
@ Then, the optimum objective value is the sum of the top k
eigenvalues of T (or T5).

@ Let V} be the matrix of the first £ eigenvectors of T} and Uy, be
the matrix of the first k eigenvectors of 7.

@ Then, the optimum is attained at (V*,U*) = (Vj, Ug).



The Two-Block Mode B of Wold’s Algorithm
(Wold, 1975; Wegelin, 2000)

@ Given the centered data X € R™*P1 and Y € R™*P2,
T = (X'X)"1(X'Y)(Y'Y) H(Y'X),
Ty = (YY) HY'X)(X'X)"H(X'Y).

@ We can obtain the eigenvectors and eigenvalues of T and T by
power method.

o It can be viewed as an iterative projection procedure.



The Two-Block Mode B of Wold’s Algorithm

@ Letw =Ywuand & = Xv.
@ Wold’s Algorithm :
1 r<1.
2 Let X"« Xand YY) Y.
3 Standardize X (") and Y ().
4 Setk « 0.
5 Assign arbitrary normalized values v A( ) and u(o)
6 Estimate &, w,-, v, and u, 1terat1vely, as follows:

Repeat
Q k+—k+

Q &~ X<T) TG and oF « Y(Ma alk— 1
© Compute v( ) and u( ) by performing multiple regression:

ﬂg.k) = argmin |.’;:],c — Y(T)ug.k) \2
k)
Uy
@,E,k) = argmin |&1{C — X(T)vs,k) |2
’U/E‘k)

5 (k) (k)

@ Normalize 0, and @y



The Two-Block Mode B of Wold’s Algorithm

@ Wold’s algorithm(cont’)
7 Fit the simple linear regression :

x(m
J

Q

¥jéry J=1,...,p1

v
J

Q

Ojwr, j=1,...,p2.

8 Determine the residual matrices of X" and Y.

xrHD o x(M g 4
vyt oy g4

9 7 <= r + 1 and return to Step 3.



Penalized CCA(Waaijenborg et al., 2008)

@ Penalized linear regression techniques can be easily adapted to
Wold’s algorithm, by modifying step 6-3.
@ We used the elastic net.

@ Selection of the penalty parameters : minimize Acor.

>y [leor(X—jo77, Y _ja)| — |eor(X 079, Y 07|

Acor = A




Sparse CCA via Precision Adjusted Iterative Thresholding
(Chen et al., 2013)

@ Waaijenborg(2008), Wiesel et al.(2008) :

e based on heuristics to avoid the non-convex nature of CCA
problem.

o there is no guarantee whether these algorithms would lead to
consistent estimators.

@ Witten et al.(2009), Parkhomenko et al.(2009) :

e using diagonal matrix or even identity matrix to approximate the
unknown matrices (X, %5 1).



Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 1.

When X5 is of rank 1, the solution (up to sign jointly) of CCA
problem is (0, 7) if and only if the covariance structure between X
and Y can be written as

Y12 = AL110n7 Bao

where 0 < A < 1,07%116 = 1 and 73291 = 1. In other words, the
correlation between a” X and b”'Y are maximized by
corr(T X, nTY"), and X is the canonical correlation between X and Y.

v




Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 2.

For general X1 with rank » > 1, the solution (up to sign jointly) of
CCA problem is (07, 7;) if and only if the covariance structure
between X and Y can be written as

.
Y12 = A1 ( Z Aﬂmf) Y2

=1

where \1 > Ao > ... > A\, > 0, 0?21193' = ]I(i = ]) = niTEQQ?b'.




Sparse CCA via Precision Adjusted Iterative Thresholding

@ We propose a probabilistic model of (X, Y"), so that the
canonical directions (#,7) are explicitly modeled in the joint
distribution of (X,Y).

The Single Canonical Pair Model

X N 0 Y11 AZ116nT Sop
Y 0) 7 \AZa2mfT %1, Yoo

with 311 > 0,99 > 0,072110 = TS =1and 0 < A < 1.




Sparse CCA via Precision Adjusted Iterative Thresholding

Algorithm : CAPIT

Input : Sample covariance matrices $ha;
Estimators of precision matrix Qu, Qgg;
Initialization pair a® 3O,

Thresholding level 1, 2.
Qutput : Canonical direction estimator (>, Bl
Set A = 911212922;
repeat
@ Right Multiplication: w"® = ABU—D;

Left Thresholding : wi’h(i) = T(w"®,7);

Left Normalization : o9 = wh® /|jwh ) ||;

Left Multiplication : wh® = o A
Right Thresholding : w;‘l(i) = T(w:;fi), Y2);

@ Right Normalization : 8 = w]?® /||l ;

until Convergence of a® and g,



Deep Canonical Correlation Analysis (Andrew et al., 2013)

[Canonical Correlation Analysis}




Deep Canonical Correlation Analysis

o If 6, is the vector of all parameters of the first view, and similarly
for 05, then

(07,605) = argmax corr(f(X;61),9(Y;62))
(61,02)

e H € R"° K € R"*?: data matrices with top-level
representation.

e H , K : centered data matrices.

@ Define 315 = ﬁﬂ’f( and 3311 = ﬁf[’ﬁ + r11 (resp. $99).

o If we take k = o, then

corr(H, K) = || T4 = te(T'T)"/?

where T = 21_1 /2 2122_1/2



Deep Canonical Correlation Analysis

@ Optimizing this quantity using gradient-based optimization.
o If the singular decomposition of 7" is T' = U DV then,
Ocorr(H, K) 1

BV Zn_l(QAnlEI—i—AmK).

where
App = 5P0V's,,)
and
Ay = —%2;11/2UDU’2;11/2

and Ocorr(H, K') /0K has a symmetric expression.



Deep Canonical Correlation Analysis

@ The correlation objective is a function of the entire training set
that does not decompose into a sum over data points.

@ Full-match optimization using the L-BFGS second-order
optimization method.

@ Pre-training : denoising autoencoder

@ Non-linear function : a novel non-saturating sigmoid function
based on the cube root.



Deep Canonical Correlation Analysis

e If g : R — Ris the function g(y) = 3®/3 + v, then our function
is s(z) = g~ ().




Deep Canonical Correlation Analysis

@ s is not bounded, and its derivative falls off much more gradually
with z.
@ We hypothesize that these properties make s better-suited for
batch optimization with second-order methods.
@ The derivative of s is a simple function of its value.
o §'(z) = (s*(x) +1)~L
@ To compute s(x), we use Newton’s method.



