Variants of Canonical Correlation Analysis

Speaker : Semin Choi

Department of Statistics, Seoul National University, South Korea
December 3, 2016

Canonical Correlation Analysis (Hotelling, 1936)

- Let $(X, Y) \in \mathbb{R}^{p_{1}} \times \mathbb{R}^{p_{2}}$ denote random vectors with covariances $\left(\Sigma_{11}, \Sigma_{22}\right)$ and cross-covariance Σ_{12}.
- CCA finds pairs of linear projections of the two views, $\left(v^{\prime} X, u^{\prime} Y\right)$ that are maximally correlated:

$$
\begin{aligned}
\left(v^{*}, u^{*}\right) & =\underset{v, u}{\operatorname{argmax}} \operatorname{corr}\left(v^{\prime} X, u^{\prime} Y\right) \\
& =\underset{v, u}{\operatorname{argmax}} \frac{v^{\prime} \Sigma_{12} u}{\sqrt{v^{\prime} \Sigma_{11} v u^{\prime} \Sigma_{22} u}} \\
& =\underset{v^{\prime} \Sigma_{11} v=u^{\prime} \Sigma_{22} u=1}{\operatorname{argmax}} v^{\prime} \Sigma_{12} u
\end{aligned}
$$

Canonical Correlation Analysis

- When finding multiple pairs of vectors $\left(v^{i}, u^{i}\right)$, subsequent projections are also constrained to be uncorrelated with previous ones:

$$
v^{i} \Sigma_{11} v^{j}=u^{i} \Sigma_{22} u^{j}=0 \text { for } i<j .
$$

- We obtain the following formulation to identify the top $k \leq \min \left(p_{1}, p_{2}\right)$ projections:

$$
\begin{aligned}
\text { maximize: } & \operatorname{tr}\left(V^{\prime} \Sigma_{12} U\right) \\
\text { subject to: } & V^{\prime} \Sigma_{11} V=U^{\prime} \Sigma_{22} U=I
\end{aligned}
$$

where $V \in \mathbb{R}^{p_{1} \times k}$ and $U \in \mathbb{R}^{p_{2} \times k}$.

Canonical Correlation Analysis

- Define $T_{1} \triangleq \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$ and $T_{2} \triangleq \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$.
- Then, the optimum objective value is the sum of the top k eigenvalues of T_{1} (or T_{2}).
- Let V_{k} be the matrix of the first k eigenvectors of T_{1} and U_{k} be the matrix of the first k eigenvectors of T_{2}.
- Then, the optimum is attained at $\left(V^{*}, U^{*}\right)=\left(V_{k}, U_{k}\right)$.

The Two-Block Mode B of Wold's Algorithm (Wold, 1975; Wegelin, 2000)

- Given the centered data $\mathbf{X} \in \mathbb{R}^{n \times p_{1}}$ and $\mathbf{Y} \in \mathbb{R}^{n \times p_{2}}$,

$$
\begin{aligned}
& \hat{T}_{1}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Y}\right)\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1}\left(\mathbf{Y}^{\prime} \mathbf{X}\right), \\
& \hat{T}_{2}=\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1}\left(\mathbf{Y}^{\prime} \mathbf{X}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Y}\right)
\end{aligned}
$$

- We can obtain the eigenvectors and eigenvalues of \hat{T}_{1} and \hat{T}_{2} by power method.
- It can be viewed as an iterative projection procedure.

The Two-Block Mode B of Wold’s Algorithm

- Let $\omega=\mathbf{Y} u$ and $\xi=\mathbf{X} v$.
- Wold's Algorithm :
$1 r \leftarrow 1$.
2 Let $\mathbf{X}^{(r)} \leftarrow \mathbf{X}$ and $\mathbf{Y}^{(r)} \leftarrow \mathbf{Y}$.
3 Standardize $\mathbf{X}^{(r)}$ and $\mathbf{Y}^{(r)}$.
4 Set $k \leftarrow 0$.
5 Assign arbitrary normalized values $\hat{v}_{r}^{(0)}$ and $\hat{u}_{r}^{(0)}$.
6 Estimate $\xi_{r}, \omega_{r}, v_{r}$ and u_{r} iteratively, as follows: Repeat
(1) $k \leftarrow k+1$.
(2) $\hat{\xi}_{r}^{k} \leftarrow \mathbf{x}^{(r)} \hat{v}_{r}^{(k-1)}$ and $\hat{\omega}_{r}^{k} \leftarrow \mathbf{Y}^{(r)} \hat{u}_{r}^{(k-1)}$
(3) Compute $\hat{v}_{r}^{(k)}$ and $\hat{u}_{r}^{(k)}$ by performing multiple regression:

$$
\begin{aligned}
\hat{u}_{r}^{(k)} & =\underset{u_{r}^{(k)}}{\operatorname{argmin}}\left|\hat{\xi}_{r}^{k}-\mathbf{Y}^{(r)} u_{r}^{(k)}\right|^{2} \\
\hat{v}_{r}^{(k)} & =\underset{v_{r}^{(k)}}{\operatorname{argmin}}\left|\hat{\omega}_{r}^{k}-\mathbf{X}^{(r)} v_{r}^{(k)}\right|^{2}
\end{aligned}
$$

(4) Normalize $\hat{v}_{r}^{(k)}$ and $\hat{u}_{r}^{(k)}$.

The Two-Block Mode B of Wold’s Algorithm

- Wold's algorithm(cont')

7 Fit the simple linear regression :

$$
\begin{aligned}
& \mathbf{X}_{j}^{(r)} \quad \approx \quad \hat{\gamma}_{j} \hat{\xi}_{r}, \quad j=1, \ldots, p_{1} \\
& \mathbf{Y}_{j}^{(r)} \quad \approx \quad \hat{\theta}_{j} \hat{\omega}_{r}, \quad j=1, \ldots, p_{2} .
\end{aligned}
$$

8 Determine the residual matrices of $\mathbf{X}^{(r)}$ and $\mathbf{Y}^{(r)}$.

$$
\begin{aligned}
& \mathbf{X}^{(r+1)} \leftarrow \mathbf{X}^{(r)}-\hat{\xi}_{r} \hat{\gamma}^{\prime} \\
& \mathbf{Y}^{(r+1)} \leftarrow \mathbf{Y}^{(r)}-\hat{\omega}_{r} \hat{\theta}^{\prime}
\end{aligned}
$$

$9 r \leftarrow r+1$ and return to Step 3.

Penalized CCA(Waaijenborg et al., 2008)

- Penalized linear regression techniques can be easily adapted to Wold's algorithm, by modifying step 6-3.
- We used the elastic net.
- Selection of the penalty parameters : minimize $\Delta_{\text {cor }}$.

$$
\Delta_{\mathrm{cor}}=\frac{\sum_{j=1}^{k}| | \operatorname{cor}\left(\mathbf{X}_{-j} \hat{v}^{-j}, \mathbf{Y}_{-j} \hat{u}^{-j}\right)\left|-\left|\operatorname{cor}\left(\mathbf{X}_{j} \hat{v}^{-j}, \mathbf{Y}_{j} \hat{u}^{-j}\right)\right|\right|}{k}
$$

Sparse CCA via Precision Adjusted Iterative Thresholding (Chen et al., 2013)

- Waaijenborg(2008), Wiesel et al.(2008) :
- based on heuristics to avoid the non-convex nature of CCA problem.
- there is no guarantee whether these algorithms would lead to consistent estimators.
- Witten et al.(2009), Parkhomenko et al.(2009) :
- using diagonal matrix or even identity matrix to approximate the unknown matrices $\left(\Sigma_{1}^{-1}, \Sigma_{2}^{-1}\right)$.

Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 1.

When Σ_{12} is of rank 1, the solution (up to sign jointly) of CCA problem is (θ, η) if and only if the covariance structure between X and Y can be written as

$$
\Sigma_{12}=\lambda \Sigma_{11} \theta \eta^{T} \Sigma_{22}
$$

where $0<\lambda \leq 1, \theta^{T} \Sigma_{11} \theta=1$ and $\eta^{T} \Sigma_{22} \eta=1$. In other words, the correlation between $a^{T} X$ and $b^{T} Y$ are maximized by $\operatorname{corr}\left(\theta^{T} X, \eta^{T} Y\right)$, and λ is the canonical correlation between X and Y.

Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 2.

For general Σ_{12} with rank $r \geq 1$, the solution (up to sign jointly) of CCA problem is $\left(\theta_{1}, \eta_{1}\right)$ if and only if the covariance structure between X and Y can be written as

$$
\Sigma_{12}=\lambda \Sigma_{11}\left(\sum_{i=1}^{r} \lambda_{i} \theta_{i} \eta_{i}^{T}\right) \Sigma_{22}
$$

where $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{r}>0, \theta_{i}^{T} \Sigma_{11} \theta_{j}=\mathbb{I}(i=j)=\eta_{i}^{T} \Sigma_{22} \eta_{j}$.

Sparse CCA via Precision Adjusted Iterative Thresholding

- We propose a probabilistic model of (X, Y), so that the canonical directions (θ, η) are explicitly modeled in the joint distribution of (X, Y).

The Single Canonical Pair Model

$$
\binom{X}{Y} \sim N\left(\binom{0}{0},\left(\begin{array}{cc}
\Sigma_{11} & \lambda \Sigma_{11} \theta \eta^{T} \Sigma_{22} \\
\lambda \Sigma_{22} \eta \theta^{T} \Sigma_{11} & \Sigma_{22}
\end{array}\right)\right)
$$

with $\Sigma_{11}>0, \Sigma_{22}>0, \theta^{T} \Sigma_{11} \theta=\eta^{T} \Sigma_{22} \eta=1$ and $0<\lambda \leq 1$.

Sparse CCA via Precision Adjusted Iterative Thresholding

Algorithm : CAPIT

Input : Sample covariance matrices $\hat{\Sigma}_{12}$;
Estimators of precision matrix $\hat{\Omega}_{11}, \hat{\Omega}_{22}$;
Initialization pair $\alpha^{(0)}, \beta^{(0)}$;
Thresholding level γ_{1}, γ_{2}.
Output : Canonical direction estimator $\alpha^{(\infty)}, \beta^{(\infty)}$.
Set $\hat{A}=\hat{\Omega}_{11} \hat{\Sigma}_{12} \hat{\Omega}_{22}$;
repeat

- Right Multiplication: $\omega^{l,(i)}=\hat{A} \beta^{(i-1)}$;
- Left Thresholding : $\omega_{t h}^{l,(i)}=T\left(\omega^{l,(i)}, \gamma_{1}\right)$;
- Left Normalization : $\alpha^{(i)}=\omega_{t h}^{l,(i)} /\left\|\omega_{t h}^{l,(i)}\right\|$;
- Left Multiplication : $\omega^{r,(i)}=\alpha^{(i)} \hat{A}$;
- Right Thresholding : $\omega_{t h}^{r,(i)}=T\left(\omega_{t h}^{r,(i)}, \gamma_{2}\right)$;
- Right Normalization : $\beta^{(i)}=\omega_{t h}^{r,(i)} /\left\|\omega_{t h}^{r,(i)}\right\|$;
until Convergence of $\alpha^{(i)}$ and $\beta^{(i)}$.

Deep Canonical Correlation Analysis (Andrew et al., 2013)

Deep Canonical Correlation Analysis

- If θ_{1} is the vector of all parameters of the first view, and similarly for θ_{2}, then

$$
\left(\theta_{1}^{*}, \theta_{2}^{*}\right)=\underset{\left(\theta_{1}, \theta_{2}\right)}{\operatorname{argmax}} \operatorname{corr}\left(f\left(X ; \theta_{1}\right), g\left(Y ; \theta_{2}\right)\right)
$$

- $H \in \mathbb{R}^{n \times o}, K \in \mathbb{R}^{n \times o}$: data matrices with top-level representation.
- \bar{H}, \bar{K} : centered data matrices.
- Define $\hat{\Sigma}_{12}=\frac{1}{n-1} \bar{H}^{\prime} \bar{K}$ and $\hat{\Sigma}_{11}=\frac{1}{n-1} \bar{H}^{\prime} \bar{H}+r_{1} I$ (resp. $\hat{\Sigma}_{22}$).
- If we take $k=o$, then

$$
\operatorname{corr}(H, K)=\|T\|_{t r}=\operatorname{tr}\left(T^{\prime} T\right)^{1 / 2}
$$

where $T=\hat{\Sigma}_{11}^{-1 / 2} \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1 / 2}$.

Deep Canonical Correlation Analysis

- Optimizing this quantity using gradient-based optimization.
- If the singular decomposition of T is $T=U D V^{\prime}$ then,

$$
\frac{\partial \operatorname{corr}(H, K)}{\partial H}=\frac{1}{n-1}\left(2 \Delta_{11} \bar{H}+\Delta_{12} \bar{K}\right)
$$

where

$$
\Delta_{12}=\hat{\Sigma}_{11}^{-1 / 2} U V^{\prime} \hat{\Sigma}_{22}^{-1 / 2}
$$

and

$$
\Delta_{11}=-\frac{1}{2} \hat{\Sigma}_{11}^{-1 / 2} U D U^{\prime} \hat{\Sigma}_{11}^{-1 / 2}
$$

and $\partial \operatorname{corr}(H, K) / \partial K$ has a symmetric expression.

Deep Canonical Correlation Analysis

- The correlation objective is a function of the entire training set that does not decompose into a sum over data points.
- Full-match optimization using the L-BFGS second-order optimization method.
- Pre-training : denoising autoencoder
- Non-linear function : a novel non-saturating sigmoid function based on the cube root.

Deep Canonical Correlation Analysis

- If $g: \mathbb{R} \rightarrow \mathbb{R}$ is the function $g(y)=y^{3} / 3+y$, then our function is $s(x)=g^{-1}(x)$.

Deep Canonical Correlation Analysis

- s is not bounded, and its derivative falls off much more gradually with x.
- We hypothesize that these properties make s better-suited for batch optimization with second-order methods.
- The derivative of s is a simple function of its value.
- $s^{\prime}(x)=\left(s^{2}(x)+1\right)^{-1}$.
- To compute $s(x)$, we use Newton's method.

