Variants of Canonical Correlation Analysis

Speaker : Semin Choi

Department of Statistics, Seoul National University, South Korea

December 3, 2016

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Canonical Correlation Analysis (Hotelling, 1936)

- Let (X, Y) ∈ ℝ^{p1} × ℝ^{p2} denote random vectors with covariances (Σ₁₁, Σ₂₂) and cross-covariance Σ₁₂.
- CCA finds pairs of linear projections of the two views, (v'X, u'Y) that are maximally correlated:

$$(v^*, u^*) = \operatorname*{argmax}_{v,u} \operatorname{corr}(v'X, u'Y)$$
$$= \operatorname{argmax}_{v,u} \frac{v'\Sigma_{12}u}{\sqrt{v'\Sigma_{11}vu'\Sigma_{22}u}}$$
$$= \operatorname{argmax}_{v'\Sigma_{11}v=u'\Sigma_{22}u=1} v'\Sigma_{12}u$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• When finding multiple pairs of vectors (v^i, u^i) , subsequent projections are also constrained to be uncorrelated with previous ones:

$$v^i \Sigma_{11} v^j = u^i \Sigma_{22} u^j = 0 \text{ for } i < j.$$

• We obtain the following formulation to identify the top $k \leq \min(p_1, p_2)$ projections:

maximize: $\operatorname{tr}(V'\Sigma_{12}U)$ subject to: $V'\Sigma_{11}V = U'\Sigma_{22}U = I.$

where $V \in \mathbb{R}^{p_1 \times k}$ and $U \in \mathbb{R}^{p_2 \times k}$.

- Define $T_1 \triangleq \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$ and $T_2 \triangleq \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$.
- Then, the optimum objective value is the sum of the top k eigenvalues of T_1 (or T_2).
- Let V_k be the matrix of the first k eigenvectors of T_1 and U_k be the matrix of the first k eigenvectors of T_2 .

• Then, the optimum is attained at $(V^*, U^*) = (V_k, U_k)$.

The Two-Block Mode B of Wold's Algorithm (Wold, 1975; Wegelin, 2000)

• Given the centered data $\mathbf{X} \in \mathbb{R}^{n \times p_1}$ and $\mathbf{Y} \in \mathbb{R}^{n \times p_2}$,

$$\hat{T}_1 = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Y})(\mathbf{Y}'\mathbf{Y})^{-1}(\mathbf{Y}'\mathbf{X}),$$
$$\hat{T}_2 = (\mathbf{Y}'\mathbf{Y})^{-1}(\mathbf{Y}'\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Y}).$$

• We can obtain the eigenvectors and eigenvalues of \hat{T}_1 and \hat{T}_2 by power method.

• It can be viewed as an iterative projection procedure.

The Two-Block Mode B of Wold's Algorithm

• Let
$$\omega = \mathbf{Y}u$$
 and $\xi = \mathbf{X}v$.

• Wold's Algorithm :

- $1 r \leftarrow 1$.
- 2 Let $\mathbf{X}^{(r)} \leftarrow \mathbf{X}$ and $\mathbf{Y}^{(r)} \leftarrow \mathbf{Y}$.
- 3 Standardize $\mathbf{X}^{(r)}$ and $\mathbf{Y}^{(r)}$.
- 4 Set $k \leftarrow 0$.
- 5 Assign arbitrary normalized values $\hat{v}_r^{(0)}$ and $\hat{u}_r^{(0)}$.
- 6 Estimate ξ_r, ω_r, v_r and u_r iteratively, as follows: **Repeat**
 - $\begin{array}{c} \bullet \quad k \leftarrow k+1. \\ \bullet \quad \hat{\xi}_r^k \leftarrow \mathbf{X}^{(r)} \hat{v}_r^{(k-1)} \text{ and } \hat{\omega}_r^k \leftarrow \mathbf{Y}^{(r)} \hat{u}_r^{(k-1)} \end{array}$

3 Compute $\hat{v}_r^{(k)}$ and $\hat{u}_r^{(k)}$ by performing multiple regression:

$$\begin{split} \hat{u}_{r}^{(k)} &= \ \operatorname*{argmin}_{u_{r}^{(k)}} | \hat{\xi}_{r}^{k} - \mathbf{Y}^{(r)} u_{r}^{(k)} |^{2} \\ \hat{v}_{r}^{(k)} &= \ \operatorname*{argmin}_{v_{r}^{(k)}} | \hat{\omega}_{r}^{k} - \mathbf{X}^{(r)} v_{r}^{(k)} |^{2} \\ \hat{v}_{r}^{(k)} &= \ \operatorname*{argmin}_{v_{r}^{(k)}} | \hat{\omega}_{r}^{k} - \mathbf{X}^{(r)} v_{r}^{(k)} |^{2} \end{split}$$

Normalize $\hat{v}_r^{(k)}$ and $\hat{u}_r^{(k)}$.

The Two-Block Mode B of Wold's Algorithm

- Wold's algorithm(cont')
 - 7 Fit the simple linear regression :

$$\begin{aligned} \mathbf{X}_{j}^{(r)} &\approx \hat{\gamma}_{j}\hat{\xi}_{r}, \quad j=1,...,p_{1} \\ \mathbf{Y}_{j}^{(r)} &\approx \hat{\theta}_{j}\hat{\omega}_{r}, \quad j=1,...,p_{2} \end{aligned}$$

8 Determine the residual matrices of $\mathbf{X}^{(r)}$ and $\mathbf{Y}^{(r)}$.

$$\begin{aligned} \mathbf{X}^{(r+1)} &\leftarrow \mathbf{X}^{(r)} - \hat{\xi}_r \hat{\gamma}' \\ \mathbf{Y}^{(r+1)} &\leftarrow \mathbf{Y}^{(r)} - \hat{\omega}_r \hat{\theta}' \end{aligned}$$

9 $r \leftarrow r + 1$ and return to Step 3.

Penalized CCA(Waaijenborg et al., 2008)

- Penalized linear regression techniques can be easily adapted to Wold's algorithm, by modifying step 6-3.
- We used the elastic net.
- Selection of the penalty parameters : minimize Δ_{cor} .

$$\Delta_{\rm cor} = \frac{\sum_{j=1}^{k} ||cor(\mathbf{X}_{-j}\hat{v}^{-j}, \mathbf{Y}_{-j}\hat{u}^{-j})| - |cor(\mathbf{X}_{j}\hat{v}^{-j}, \mathbf{Y}_{j}\hat{u}^{-j})||}{k}$$

Sparse CCA via Precision Adjusted Iterative Thresholding (Chen et al., 2013)

- Waaijenborg(2008), Wiesel et al.(2008) :
 - based on heuristics to avoid the non-convex nature of CCA problem.
 - there is no guarantee whether these algorithms would lead to consistent estimators.
- Witten et al.(2009), Parkhomenko et al.(2009) :
 - using diagonal matrix or even identity matrix to approximate the unknown matrices $(\Sigma_1^{-1}, \Sigma_2^{-1})$.

Proposition 1.

When Σ_{12} is of rank 1, the solution (up to sign jointly) of CCA problem is (θ, η) if and only if the covariance structure between X and Y can be written as

$$\Sigma_{12} = \lambda \Sigma_{11} \theta \eta^T \Sigma_{22}$$

where $0 < \lambda \leq 1$, $\theta^T \Sigma_{11} \theta = 1$ and $\eta^T \Sigma_{22} \eta = 1$. In other words, the correlation between $a^T X$ and $b^T Y$ are maximized by $\operatorname{corr}(\theta^T X, \eta^T Y)$, and λ is the canonical correlation between X and Y.

Proposition 2.

For general Σ_{12} with rank $r \ge 1$, the solution (up to sign jointly) of CCA problem is (θ_1, η_1) if and only if the covariance structure between X and Y can be written as

$$\Sigma_{12} = \lambda \Sigma_{11} \bigg(\sum_{i=1}^r \lambda_i \theta_i \eta_i^T \bigg) \Sigma_{22}$$

where $\lambda_1 > \lambda_2 > ... > \lambda_r > 0$, $\theta_i^T \Sigma_{11} \theta_j = \mathbb{I}(i=j) = \eta_i^T \Sigma_{22} \eta_j$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ ◆○ ◆○

We propose a probabilistic model of (X, Y), so that the canonical directions (θ, η) are explicitly modeled in the joint distribution of (X, Y).

The Single Canonical Pair Model $\begin{pmatrix} X \\ Y \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \lambda \Sigma_{11} \theta \eta^T \Sigma_{22} \\ \lambda \Sigma_{22} \eta \theta^T \Sigma_{11} & \Sigma_{22} \end{pmatrix}\right)$ with $\Sigma_{11} > 0, \Sigma_{22} > 0, \theta^T \Sigma_{11} \theta = \eta^T \Sigma_{22} \eta = 1$ and $0 < \lambda \le 1$.

Algorithm : CAPIT

Input : Sample covariance matrices $\hat{\Sigma}_{12}$; Estimators of precision matrix $\hat{\Omega}_{11}$, $\hat{\Omega}_{22}$; Initialization pair $\alpha^{(0)}$, $\beta^{(0)}$; Thresholding level γ_1 , γ_2 . **Output** : Canonical direction estimator $\alpha^{(\infty)}$, $\beta^{(\infty)}$. Set $\hat{A} = \hat{\Omega}_{11} \hat{\Sigma}_{12} \hat{\Omega}_{22}$; **repeat**

- Right Multiplication: $\omega^{l,(i)} = \hat{A}\beta^{(i-1)}$;
- Left Thresholding : $\omega_{th}^{l,(i)} = T(\omega^{l,(i)}, \gamma_1);$
- Left Normalization : $\alpha^{(i)} = \omega_{th}^{l,(i)} / \|\omega_{th}^{l,(i)}\|;$
- Left Multiplication : $\omega^{r,(i)} = \alpha^{(i)} \hat{A};$
- Right Thresholding : $\omega_{th}^{r,(i)} = T(\omega_{th}^{r,(i)}, \gamma_2);$
- Right Normalization : $\beta^{(i)} = \omega_{th}^{r,(i)} / \|\omega_{th}^{r,(i)}\|$; until Convergence of $\alpha^{(i)}$ and $\beta^{(i)}$.

Deep Canonical Correlation Analysis (Andrew et al., 2013)

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○ ○

• If θ_1 is the vector of all parameters of the first view, and similarly for θ_2 , then

$$(\theta_1^*, \theta_2^*) = \operatorname*{argmax}_{(\theta_1, \theta_2)} \operatorname{corr}(f(X; \theta_1), g(Y; \theta_2))$$

- $H \in \mathbb{R}^{n \times o}, K \in \mathbb{R}^{n \times o}$: data matrices with top-level representation.
- \overline{H} , \overline{K} : centered data matrices.
- Define $\hat{\Sigma}_{12} = \frac{1}{n-1} \bar{H}' \bar{K}$ and $\hat{\Sigma}_{11} = \frac{1}{n-1} \bar{H}' \bar{H} + r_1 I$ (resp. $\hat{\Sigma}_{22}$).
- If we take k = o, then

$$\operatorname{corr}(H, K) = ||T||_{tr} = \operatorname{tr}(T'T)^{1/2}$$

where
$$T = \hat{\Sigma}_{11}^{-1/2} \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1/2}$$
.

- Optimizing this quantity using gradient-based optimization.
- If the singular decomposition of T is T = UDV' then,

$$\frac{\partial \operatorname{corr}(H,K)}{\partial H} = \frac{1}{n-1} (2\Delta_{11}\bar{H} + \Delta_{12}\bar{K}).$$

where

$$\Delta_{12} = \hat{\Sigma}_{11}^{-1/2} U V' \hat{\Sigma}_{22}^{-1/2}$$

and

$$\Delta_{11} = -\frac{1}{2}\hat{\Sigma}_{11}^{-1/2}UDU'\hat{\Sigma}_{11}^{-1/2}$$

and $\partial \operatorname{corr}(H, K) / \partial K$ has a symmetric expression.

- The correlation objective is a function of the entire training set that does not decompose into a sum over data points.
- Full-match optimization using the L-BFGS second-order optimization method.
- Pre-training : denoising autoencoder
- Non-linear function : a novel non-saturating sigmoid function based on the cube root.

If g : R → R is the function g(y) = y³/3 + y, then our function is s(x) = g⁻¹(x).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• *s* is not bounded, and its derivative falls off much more gradually with *x*.

- We hypothesize that these properties make *s* better-suited for batch optimization with second-order methods.
- The derivative of s is a simple function of its value.

•
$$s'(x) = (s^2(x) + 1)^{-1}$$
.

• To compute s(x), we use Newton's method.