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Introduction

e HMC is a MCMC method that adopts physical system dynamics
rather than a probability distribution to propose future states in
the Markov chain.

e This allows the Markov chain to explore the target distribution
much more efficiently, resulting in faster convergence.
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Hamilton’s Equations

Let x(¢) be a location and p(¢) be a momentum at time 7.

For each location the object takes potential energy U(x).

For each momentum there is associated kinetic energy K(p).

The total energy of the system is constant and known as the Hamiltonian
H(x,p) = U(x) + K(p).

The time evolution of the system is uniquely defined by Hamilton’s equations:
b __oH __ou
dt ox  ox '’
dx  OH _ 0K(p)

dr op op
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Discretizing Hamilton’s Equations

® The Hamiltonian equations describe an object’s motion in time.

® In order to simulate Hamiltonian dynamics numerically on a computer, it is
necessary to approximate the Hamiltonian equations by discretizing time.

(1) Euler’s Method
51+ 8) = 5(0) + 5510 = 1)+ 35 (o(0),
pili+8) = pi0) + 320 = pi(1) — 652 ().
(2) The Leapfrog Method
pili+8/2) = pi() — G/ G2 (),
51 8) = x(0) + 550 (0t +5/2)
pli+8) = e +5/2) = (5/2) 52 (x1+6).
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Discretizing Hamilton’s Equations

(a) Euler's Method, stepsize 0.3

(b) Modified Euler's Method, stepsize 0.3
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Hamiltonian Monte Carlo

We wish to sample d-dimensional x from

P(x) = 7 exp(~E(x)).

We introduce a d-dimensional auxiliary variable p such that
p~N(0,M)

where M is a symmetric, positive-definite matrix.

The joint distribution of x and p is proportional to

P(x,p) o exp(—E(x))exp (—p'M~'p)
= exp (— E(x) —pTM_Ip).

We define Hamiltonian function H(x, p) and the kinetic energy K (p) as

H(x,p) = E(x) + K(p), K(p) = p"M " 'p/2.
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Hamiltonian Monte Carlo

® Setm=0.

@ Generate an initial position x©.

© Repeatuntilm =M :

1.

6.

Setm=m+ 1.

2. Sample pg ~ N'(0,M).
3.
4. Starting from (xg, po), do Leapfrog updates for L steps with

Set xo = x"=1,

stepsize § to obtain (x*, p*).
Calculate the Metropolis acceptance probability :

a = min (1,exp (— E(x*) —K(p*) + E(xo) +K(po))>.

Sample u ~ U(0,1) :
o Ifu<a,setx” =x*.
o Otherwise, set X" = x" .
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Simulation : Bivariate Normal distribution

¢ Bivariate normal distribution with p = 0.8.

Metropolis-Hastings Hamiltonian Monte Carlo
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Simulation : Bivariate Normal distribution

e 100-dimensional
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Figure 6: Values for the variable with largest standard deviation for the 100-dimensional
example, from a random-walk Metropolis run and an HMC run with L = 150.
computation time, 150 updates were counted as one iteration for random-walk Metropolis.
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