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Introduction

• HMC is a MCMC method that adopts physical system dynamics
rather than a probability distribution to propose future states in
the Markov chain.

• This allows the Markov chain to explore the target distribution
much more efficiently, resulting in faster convergence.

2 / 10



Hamilton’s Equations

• Let x(t) be a location and p(t) be a momentum at time t.

• For each location the object takes potential energy U(x).

• For each momentum there is associated kinetic energy K(p).

• The total energy of the system is constant and known as the Hamiltonian

H(x, p) = U(x) + K(p).

• The time evolution of the system is uniquely defined by Hamilton’s equations:

dp
dt

= −∂H
∂x

= −∂U(x)
∂x

,

dx
dt

=
∂H
∂p

=
∂K(p)
∂p

.
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Discretizing Hamilton’s Equations

• The Hamiltonian equations describe an object’s motion in time.
• In order to simulate Hamiltonian dynamics numerically on a computer, it is

necessary to approximate the Hamiltonian equations by discretizing time.

(1) Euler’s Method

xi(t + δ) = xi(t) + δ
dxi

dt
(t) = xi(t) + δ

∂K
∂pi

(p(t)),

pi(t + δ) = pi(t) + δ
dpi

dt
(t) = pi(t)− δ

∂U
∂xi

(x(t)).

(2) The Leapfrog Method

pi(t + δ/2) = pi(t)− (δ/2)
∂U
∂xi

(x(t)),

xi(t + δ) = xi(t) + δ
∂K
∂pi

(p(t + δ/2)),

pi(t + δ) = pi(t + δ/2)− (δ/2)
∂U
∂xi

(x(t + δ)).
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Discretizing Hamilton’s Equations
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Hamiltonian Monte Carlo

• We wish to sample d-dimensional x from

P(x) =
1
Z

exp(−E(x)).

• We introduce a d-dimensional auxiliary variable p such that

p ∼ N (0,M)

where M is a symmetric, positive-definite matrix.

• The joint distribution of x and p is proportional to

P(x, p) ∝ exp(−E(x)) exp
(
− pT M−1p

)
= exp

(
− E(x)− pT M−1p

)
.

• We define Hamiltonian function H(x, p) and the kinetic energy K(p) as

H(x, p) = E(x) + K(p), K(p) = pT M−1p/2.
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Hamiltonian Monte Carlo

1 Set m = 0.

2 Generate an initial position x(0).

3 Repeat until m = M :

1. Set m = m + 1.
2. Sample p0 ∼ N (0,M).
3. Set x0 = x(m−1).
4. Starting from (x0, p0), do Leapfrog updates for L steps with

stepsize δ to obtain (x∗, p∗).
5. Calculate the Metropolis acceptance probability :

α = min
(

1, exp
(
− E(x∗)− K(p∗) + E(x0) + K(p0)

))
.

6. Sample u ∼ U(0, 1) :
• If u ≤ α, set xm = x∗.
• Otherwise, set xm = xm−1.
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Simulation : Bivariate Normal distribution

• Bivariate normal distribution with ρ = 0.8.
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Simulation : Bivariate Normal distribution

• 100-dimensional
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