Trueskill ${ }^{\mathrm{TM}}$: A Bayesian skill rating system

 Herbrich, Ralf, Tom Minka, and Thore Graepel. NIPS. 2006.Kuhwan Jeong ${ }^{1}$

${ }^{1}$ Department of Statistics, Seoul National University, South Korea
January, 2017

Introduction

- TrueSkill ranking system is a skill based ranking system for Xbox Live developed at Microsoft Research.
- The purpose is to both identify and track the skills of gamers in order to be able to match them into competitive matches.
- TrueSkill ranking system only uses the final standings of all teams in a game in order to update the skill estimates of all gamers playing in this game.
- Ranking systems have been proposed for many sports but possibly the most prominent ranking system in use today is ELO.

ELO

- In 1959, Arpad Elo developed a statistical rating system for Chess.
- ELO models the probability of the game outcomes as a function of the two players' skill ratings s_{1} and s_{2} :

$$
P\left(\text { Player } 1 \text { wins } \mid s_{1}, s_{2}\right)=\Phi\left(\frac{s_{1}-s_{2}}{\sqrt{2} \beta}\right)
$$

- Let $y=1$ if player 1 wins, $y=-1$ if player 2 wins and $y=0$ if a draw occurs.
- Then the ELO update is given by $s_{1} \leftarrow s_{1}+y \Delta$, $s_{2} \leftarrow s_{2}-y \Delta$ and

$$
\Delta=\alpha \beta \sqrt{\pi}\left(\frac{y+1}{2}-\Phi\left(\frac{s_{1}-s_{2}}{\sqrt{2} \beta}\right)\right) .
$$

TrueSkill

- Skill s is characterized by two numbers:
- The average μ skill of the gamer.
- The degree of uncertainty σ in the gamer's skill.
- From among a population of n players $\{1, \ldots, n\}$ in a game let k teams compete a match.
- The team assignments are specified by k non-overlapping subsets

$$
A_{j} \subset\{1, \ldots, n\}, A_{i} \cap A_{j}=\text { if } i \neq j
$$

TrueSkill

- Assume an independent normal prior $p(s)=\prod_{i=1}^{n} \mathcal{N}\left(s_{i} ; \mu_{i}, \sigma_{i}^{2}\right)$.
- Each player i exhibits a performance $p_{i} \sim \mathcal{N}\left(p_{i} ; s_{i}, \beta^{2}\right)$.
- The performance t_{j} of team j is modeled as the sum of the performances of its members $t_{j}=\sum_{i \in A_{j}} p_{i}$.
- The outcome $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right) \in\{1, \ldots, k\}^{k}$ is specified by a rank r_{j} for each team j.
- Disregarding draws, the probability of a game outcome r is modeled as

$$
P\left(r \mid t_{1}, \ldots, t_{k}\right)=P\left(t_{r_{(1)}}>t_{r_{(2)}}>\cdots>t_{r_{(k)}}\right)
$$

- If draws are permitted the wining outcome $r_{(j)}<r_{(j+1)}$ requires $t_{r_{(j)}}>t_{r_{(j+1)}}+\epsilon$ and the draw outcome $r_{(j)}=r_{(j+1)}$ requires $\left|t_{r_{j)}}-t_{r_{(j+1)}}\right| \leq \epsilon$, where ϵ is a draw margin.

TrueSkill

- The posterior distribution $P(\mathbf{s} \mid \mathbf{r}, A)$ is approximated by a normal distribution $Q(\mathbf{s})$.
- μ_{i} and σ_{i}^{2} are updated to the mean and variance of the marginal distribution $Q\left(s_{i}\right)=\int_{\mathbf{s}_{-i}} Q(\mathbf{s}) d \mathbf{s}_{-i}$, respectively.

Example

- Consider a game with $k=3$ teams with team assignments $A_{1}=\{1\}, A_{2}=\{2,3\}$ and $A_{3}=\{4\}$.
- Assume that team 1 is the winner and that teams 2 and 3 draw, i.e., $\mathbf{r}=(1,2,2)$.
- Then the conditional probability of \mathbf{s}, \mathbf{p} is

$$
\begin{aligned}
P(\mathbf{s}, \mathbf{p} \mid \mathbf{r}, A) \propto & \prod_{i=1}^{4}\left\{\phi\left(s_{i} ; \mu_{i}, \sigma_{i}^{2}\right) \phi\left(p_{i} ; s_{i}, \beta^{2}\right)\right\} \\
& \times I\left(p_{1}-p_{2}-p_{3}>\epsilon\right) I\left(\left|p_{2}+p_{3}-p_{4}\right| \leq \epsilon\right) \\
= & \Phi_{1}(\mathbf{s}, \mathbf{p}) I\left(p_{1}-p_{2}-p_{3}>\epsilon\right) I\left(\left|p_{2}+p_{3}-p_{4}\right| \leq \epsilon\right)
\end{aligned}
$$

Example

- If we introduce auxiliary variables $d_{1}=p_{1}-p_{2}-p_{3}$ and $d_{2}=p_{2}+p_{3}-p_{4}$, then

$$
\begin{aligned}
P(\mathbf{s}, \mathbf{p}, \mathbf{d} \mid \mathbf{r}, A) \propto & \Phi_{1}(\mathbf{s}, \mathbf{p}) I\left(d_{1}>\epsilon\right) I\left(d_{1}=p_{1}-p_{2}-p_{3}\right) \\
& \times I\left(\left|d_{2}\right| \leq \epsilon\right) I\left(d_{2}=p_{2}+p_{3}-p_{4}\right)
\end{aligned}
$$

and $\int P(\mathbf{s}, \mathbf{p}, \mathbf{d} \mid \mathbf{r}, A) d \mathbf{d}=P(\mathbf{s}, \mathbf{p} \mid \mathbf{r}, A)$.

- By integrating sout, we get

$$
\begin{aligned}
& P(\mathbf{p}, \mathbf{d} \mid \mathbf{r}, A) \\
= & \int P(\mathbf{s}, \mathbf{p}, \mathbf{d} \mid \mathbf{r}, A) d \mathbf{s} \\
\propto & \prod_{i=1}^{4}\left\{\phi\left(p_{i} ; \mu_{i}, \sigma_{i}^{2}+\beta^{2}\right)\right\} I\left(d_{1}>\epsilon\right) I\left(d_{1}=p_{1}-p_{2}-p_{3}\right) \\
& \times I\left(\left|d_{2}\right| \leq \epsilon\right) I\left(d_{2}=p_{2}+p_{3}-p_{4}\right) \\
= & \Phi_{2}(\mathbf{p}) I\left(d_{1}>\epsilon\right) I\left(d_{1}=p_{1}-p_{2}-p_{3}\right) I\left(\left|d_{2}\right| \leq \epsilon\right) I\left(d_{2}=p_{2}+p_{3}-p_{4}\right) .
\end{aligned}
$$

Example

- The marginal distribution of d_{1} is proportional to

$$
\begin{aligned}
& P\left(d_{1} \mid \mathbf{r}, A\right) \\
\propto & \iint \Phi_{2}(\mathbf{p}) I\left(d_{1}>\epsilon\right) I\left(d_{1}=p_{1}-p_{2}-p_{3}\right) I\left(\left|d_{2}\right| \leq \epsilon\right) I\left(d_{2}=p_{2}+p_{3}-p_{4}\right) d d_{2} d \mathbf{p} \\
= & I\left(d_{1}>\epsilon\right) \int \Phi_{2}(\mathbf{p}) I\left(d_{1}=p_{1}-p_{2}-p_{3}\right) I\left(\left|p_{2}+p_{3}-p_{4}\right| \leq \epsilon\right) d \mathbf{p} .
\end{aligned}
$$

- We assume that $I\left(d_{1}>\epsilon\right)$ and $I\left(\left|d_{2}\right| \leq \epsilon\right)$ are proportional to $\phi\left(d_{1} ; \hat{m}_{1}, \hat{s}_{1}^{2}\right)$ and $\phi\left(d_{2} ; \hat{m}_{2}, \hat{s}_{2}^{2}\right)$, respectively.

Example

- Given \hat{m}_{2} and \hat{s}_{2}^{2},

$$
P\left(d_{1} \mid \mathbf{r}, A\right) \propto I\left(d_{1}>\epsilon\right) \int I\left(d_{1}=p_{1}-p_{2}-p_{3}\right) \Phi_{2}(\mathbf{p}) \phi\left(p_{2}+p_{3}-p_{4} ; \hat{m}_{2}, \hat{s}_{2}^{2}\right) d \mathbf{p}
$$

- We can find $\tilde{m}_{1}, \tilde{s}_{1}^{2}$ such that

$$
\int I\left(d_{1}=p_{1}-p_{2}-p_{3}\right) \Phi_{2}(\mathbf{p}) \phi\left(p_{2}+p_{3}-p_{4} ; \hat{m}_{2}, \hat{s}_{2}^{2}\right) d \mathbf{p} \propto \phi\left(d_{1} ; \tilde{m}_{1}, \tilde{s}_{1}^{2}\right)
$$

- Therefore, $P\left(d_{1} \mid \mathbf{r}, A\right)$ is a truncated normal distribution.
- We approximate $P\left(d_{1} \mid \mathbf{r}, A\right)$ by $\mathcal{N}\left(d_{1} ; m_{1}, s_{1}^{2}\right)$ via moment matching.
- Then we have

$$
\phi\left(d_{1} ; m_{1}, s_{1}^{2}\right) \propto I\left(d_{1}>\epsilon\right) \phi\left(d_{1} ; \tilde{m}_{1}, \tilde{s}_{1}^{2}\right)
$$

- So we update \hat{m}_{1} and \hat{s}_{1}^{2} to

$$
\hat{m}_{1}=\frac{m_{1} \tilde{s}_{1}^{2}-\tilde{m}_{1} s_{1}^{2}}{s_{1}^{2}+\tilde{s}_{1}^{2}}, \hat{s}_{1}^{2}=\frac{s_{1}^{2} \tilde{s}_{1}^{2}}{s_{1}^{2}+\tilde{s}_{1}^{2}} .
$$

Example

- Likewise, we update \hat{m}_{2} and \hat{s}_{2}^{2} given \hat{m}_{1} and \hat{s}_{1}^{2}.
- We iterate these updates until the convergence of $m_{1}, m_{2}, s_{1}^{2}, s_{2}^{2}$.
- Then $P(\mathbf{s}, \mathbf{p}, \mathbf{d} \mid \mathbf{r}, A)$ is approximated by $Q(\mathbf{s}, \mathbf{p}, \mathbf{d})$ where

$$
\begin{aligned}
Q(\mathbf{s}, \mathbf{p}, \mathbf{d}) \propto & \Phi_{1}(\mathbf{s}, \mathbf{p}) I\left(d_{1}=p_{1}-p_{2}-p_{3}\right) I\left(d_{2}=p_{2}+p_{3}-p_{4}\right) \\
& \times \phi\left(d_{1} ; \hat{m}_{1}, \hat{s}_{1}^{2}\right) \phi\left(d_{2} ; \hat{m}_{2}, \hat{s}_{2}^{2}\right) \\
Q(\mathbf{s}, \mathbf{p}) \propto & \Phi_{1}(\mathbf{s}, \mathbf{p}) \phi\left(p_{1}-p_{2}-p_{3} ; \hat{m}_{1}, \hat{s}_{1}^{2}\right) \phi\left(p_{2}+p_{3}-p_{4} ; \hat{m}_{2}, \hat{s}_{2}^{2}\right) \\
Q\left(s_{i}\right) \propto & \phi\left(s_{i} ; \mu_{i}, \sigma_{i}^{2}\right) \int \phi\left(p_{i} ; s_{i}, \beta^{2}\right) \prod_{j \neq i} \phi\left(p_{j} ; \mu_{j}, \sigma_{j}^{2}+\beta^{2}\right) \\
& \times \phi\left(p_{1}-p_{2}-p_{3} ; \hat{m}_{1}, \hat{s}_{1}^{2}\right) \phi\left(p_{2}+p_{3}-p_{4} ; \hat{m}_{2}, \hat{s}_{2}^{2}\right) d \mathbf{p}
\end{aligned}
$$

- We update μ_{i} and σ_{i}^{2} by the mean and variance of $Q\left(s_{i}\right)$.

