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Outline

Can consistency and minimax rate optimality be shared?



Setup

» Consider the regression model
yi=fx)+ei, i=12...,n,

where x; = (X1, ..., Xid), fis the true regression function,
j.id.
and &; "~ N(0,02).

» To estimate f, we consider linear models as follows:
y= fk(x7 ek) + g,

where for each k, Fi = {fi(x, 0k), 0k € O} is a linear familiy of regression

functions with 0, being the parameter of a finite dimension my.



Minimax property of AIC

For a model selection criterion ¢ that select model IA<, let
n

ASE(fI() = %Z (f(x,) - 1"2(()(,‘7 élh()>27

i=1

where 63;( is the LSE. The corresponding risk is

R(f; 8; n) ZE( — fi(x;,0 k))z.

Definition (Minimax-rate optimal)
0 is said to be minimax-rate optimal over a class of regression functions F

n ~ 2
if supge 7 R(f; 0; n) converges at the same rate as inf,supg % ziE(f(x,-) — f(x;)) ,
=

where fis over all estimators based on the observations of Yis---sYn-



Minimax property of AIC

Notations
> I: the collection of all the models being considered
» Np,: the number of models that have the same dimension min T
(Here we assume that 3¢ > 0 such that N < e“.)

> M)y: the projection matrix of model k, ry: the rank of M

Proposition (Yang, 1999)

There exists C > 0 depending only on ¢ such that for every f, we have

If = Mifl7 Q).

R(f;daic; n) < C inf (
k n n

er
Corollary
Suppose that model k* € I is the true model. Then
Cmyex

sup R(f;daic;n) < .
e F o n




Can consistency and minimax rate optimality be shared?

Assumptions (A1)
There exist two models ki, ko € T" such that
1. Fiy = {fi, (%,0k;) : Ok, € O, } is a sub-linear space of
Fry = {fug (%,0ky) : Oy € Oy}
2. Jd¢(x) € Fi, orthogonal to Fy, with %Zn:l ¢?%(x/) being bounded between two
positive constants;
3. 3fg € Fi, such that fy is not in any family Fy, k € I" that does not contain Fy, .

Theorem 1
Under Al, if any model selection method ¢ is consistent in selection, then we must
have

n sup R(f,6;n) — oo.
fe Fi,



Theorem 1 proof (1)

In a simple case, suppose that we have two models, model 0: y; = o + €; and model 1:
vi=a+Bxi+ei, i=1,2,...,n.
> Assume that X, = %Zix,- =0 and %fo,? is bounded between two positive
constants for all n.
> Let § denote a consistent model selection criterion and let A, be the event that

model 1 is selected.
> Then under the squared error loss,

2

E(f(x) ~ Rx)* = “ 4+ X E(Bla, = )° + 25E(& — 0) (Bla, ~ )

and we have
n

2 )E(Bla, — B2,

2
R(fsm) = 2+ (
i=1

SRR

where (&, ) is the LSE.



Theorem 1 proof (2)

> Note that sup Eg(v/nBla, —v/nB)? = sup [Egn(B — B)2la, + nB2Ps(AS)].
8l <c 181<c

> To show nsupsR(f; §; n) — oo, it suffices to show that for Vc > 0,

sup nB%Pg(AS) — oo. (1)
[B]<c

> Since § is consistent, we have Pg—o(An) — 0 as n — oo.

> Consider a testing problem with Hp : 5 =0 vs Hy : 8 > 0. If we take A, as the
rejection region, § becomes a testing rule with probability of type 1 error

approaching 0.



Theorem 1 proof (3)

> Here we assume ¢; i'ri\ld./\/(O, 1) and a = 0.
> Let f{y1,...,yn; B) denote the joint probability density function. Then {fg} has a

n
monotone likelihood ratio in T(x) = > xy;.

i=1
> By the Karlin-Rubin Theorem, a UMP test exists which is to reject Hyp when
>~ xjyi is larger than some constant . Choose h, so that
Pg—o(3° xiyi > hn) = Pg—o(An).
> Let Ap « denote the event {>" xjyi > hn}. Then we have for all 8 > 0,

Pg(Anx) > Pg(An). Hence sup nB2Pg(AS) > sup nB2Pg(AS.,).
181<c 0<B<c '
> Let 8, = min (%, c). Then we have sup nBQ]P’ﬂ( ) > nB? Pg, (A5 «)-
22 0<f<c
Since > x;y; is normally distributed, we can show that Pgn(Aﬁy*) — 1.



Theorem 1 proof (4)

In general case, under Al
1. Fi, is a sub-linear space of F,;
2. Let ¢(x) € Fi, that is orthogoanl to Fy, ;
3. Let fo € Fi, such that fo doe not belong to any other F that does not contain
Fhy -
Let B, be the event that model ki is not selected for 4. If § is consistent, then
PfO(Bn) — 0 as n — oco. Consider a simplified model y; = fy(x;) + B¢(x;) + &; and the
testing problem Hp : B =0 vs Hy : § > 0. Denote
b £ (X)), Axa) sy = (1, ya)s € = (1, -0y 2n),
¢ = (o(x1),- .., p(xn))’
» My, : the projection matrix of model k;.

Then we have

£ = M, yllz = [If = My £l + &' My e
= [|B¢ — BMi, 9|7 + €' My, &
= B%||¢lls + &' My, e.



Theorem 1 proof (5)

Then the risk of the estimator associated with § is

R(f, 6; n) ZEB”f MkYHn {k=k}

kEF
> *EB”f MIqYHn {k=ki}
B2
> *EZBH‘JS”%/{;}:;(I}
Z ¢> (XI)BQ (/A<= kl)-

Hence it is enough to show sup nB?Pg(BS) — oo.
[Bl<c

> Let z; = y; — fo(x;). Then zi,...,z, are indep. with z; ~ N(B¢(x;), o

> {f(z1,...,2n;8)} has a MLR in T(x) = >, zip(x;).

> By the Karlin-Rubin Thm, and UMP test property we can show

sup nB%Pg(BS) — oo
[Bl<c

2),

(2



Theorem 1 proof (6)

> Let h, so that Pg—o (D7 zig(xj) > hn) = Pg—o(Bn) — 0. Let By « be denote
the event {Z zip(x;) > dn}. Then a UMP test exists which is to reject Hy when
> izip(x;) is Iarger than hp.

> By the UMP property of B «, for any 8 > 0, Pg(Bn,«) > Pg(Bn), hence

sup nB?Py(BS) > sup nB2Py(BE,.)
[B]<c 0<p<c

> Let B, = min ( Then

sup nB*Ps(B5.) > nBiPs, (B )
0<B<c

and (note that h,/y/n — oo as n — 00.)

_ 2 (x;
o, (B5,.) = 3, (3 zi(x) < h) = P(A(0.1) < %%)
>MN@1 2¢?§??§J n = oo.
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Bad risk behavior of sparse estimator
Setup

» Consider

, .
yi=x0+¢e;, i=1,...,n,

where x; € R? satisfy % 7 ,xx} - Q>0asn— oo.

iid . . .
> ¢; "~" fwith mean 0 and variance 1 where a density f possesses an absolutely

continuous derivative df/dx satisfying
oo 2
0< / {(df(x)/dx)/f(x)} f(x)dx < oo.

> Let P, y denote the distribution of the sample (y1,...,yn)’ and let E, ¢ denote
the corresponding expectation operator.

> For 0 € RY, let r(0) denote a d x 1 vector where r;() = 0 if §; = 0 and r;(8) = 1
if 6; # 0.



Bad risk behavior of sparse estimator

Sparsity-type condition

/

An estimator 6 for 0 based on the sample (y1,...,yn)’ is said to satisfy the

sparsity-type condition if for every § € RY
Pne (r(é) < r(@)) —1 asn— oo,

where the inequality sign is to be interpreted componentwise.

Theorem 2

Let § be an aribitrary estimator for 0 that satisties the sparsity-type condition (3).

Then

sup Ep ¢ [n(é —0)(6— 9)] — 00
Oerd

for n — co. More generally, let £ : R? — R be a nonnegative loss functon. Then

sup By p0(v/n(0 — 0)) — sup £(s)
HeRrd seRd

for n — oco.

®3)

4)

®)



Theorem 2 proof

Let 0, = —n~1/2s, s € RY arbitrary. And note that
sup £(u) = sup £(v/n(6 — 6)) =E, g sup £(v/n(0 —0))
ueRrd 0eRrd 0cRrRd (6)

> Enpl(v/n(0 —0)), VO €R?

Then we have

sup £(u) > sup E,gl(+/n(8 — 8)) > E, 0,£(~/n(6 — 6,))
ueRrRd ORI

> En g, |[Ux/0(0 = )16 = 0)] = 6(=/nb)Pr g, (r0) =0) ()

= U(s)Pp 6, (r(6) = 0).

» By the sparsity-type condition, Pnyo(r(é) =0) > 1asn— co.
» Under our assumption, the model is locally asymptotical normal. Hence we can

show that the sequence of probability measures P, g, is contiguous w.r.t. P o.

So, sup E, gZ(f(Q —-0)) — sup £(s) as n — oo.
seRd



Let (Q2n,.An) be measurable spaces, each equipped with a pair of probability measures
P, and Q.

Definition (Contiguity)

The sequence Qj is contiguous with respect to the sequence P, if Pn(An) — 0 implies
Qn(An) — 0 for every sequence of measurable sets A,. This is denoted Q, < Pj.

Lemma 1 (Le Cam'’s first lemma)

Qn< Py

< If dPp/dQp converges in distribution under Q, to a random variable U, then
P(U>0)=1.

Lemma 2

Consider the linear model y; = x/0 + ¢, i=1,...,n, where x; € RY and

e "k N(0,1). If 0y — 9 = O(n~'/2) and n=1 350, x/x; — Q@ > 0 as n — oo, then

Py, is contiguous w.r.t. P, g, .



Lemma 2 proof

Suppose that 6, — ¥, = O(n _1/2) and n— ! > 1x 'x; — Q > 0 as n — oo. First, we
will show that dP,, g, /dP, s, 4 U under P, 9, where U is almost surely positive. Then
by Le Cam's first lemma, P, 9, <Pp g, .

indep. .
> Under Py, vi " N (x}0n,1), for i=1,...,n. Hence

I le(en_ﬁn y: ZM N(_%AmAn)y

n19,,

n
where A, = (0, — 9n)" > xx}(0n — Un).
i=1
» Since 0, — Y, = O(n*1/2), any subsequence contain a further subsequence s.t.
along this subsequence /n(6, — ¥,) — « for some o € RY.
> log (d[P’,,,gn/dE"mgn) converges in distribution under P, 5, to Z ~ N (—A/2, A)

where A = o/ Q. Hence dP,, g, /dP, 9, A exp(Z) which is always positive. ]



Numerical results on the SCAD estimator

Consider y; =x/0+¢j, i=1,...,n
where

» 0cRand d=8, &; % N(0,1), n = 60,120, 240, 480, 960;

> x;are Ny(0,%), T = pli=il with p = 0.5;

> True parameter: 6, = 6y + (v/+/n) x n, 80 = (3,1.5,0,0,2,0,0,0),

n=1(0,0,1,0,1,0,1,1,1)’, v is the sequence with length 101 from O to 8.

Tuning parameter of SCAD estimator:

» a= 3.7 (Fan and Li, 2001);

> the range of \'s : {6% l(')"ggﬁno 18 =0.9,1.1,1.3,...,2}, 62 denotes SSE/(n — d)

from a least-squares fit.

v Then A — 0 and /n\ — oo, it guarantees that the resulting SCAD estimator

possesses the Oracle property.



Numerical results on the SCAD estimator

Two types of performance measures are considered:
> Median relative model error, ME(§) = (6 — 6)'S(0 — 6);
> Relative mean squared error, RE(A) = ME(A)/ME(f,s).

Median Relative Model Error of SCAD2 Relative Mean Squared Error of SCAD2
< <
[s2] (3]
~N o~
o o
I T T T 1 I T T T 1
0 2 4 6 8 0 2 4 6 8
gamma gamma

Figure 1 : Monte Carlo performance estimates for ME, RE, under the trur parameter
0, = 00 + (v/+/n)(0,0,1,1,0,1,1,1)" each based on 500 Monte Carlo replications. Larger
sample size correspond to larger maximal errors.
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