Can the Strengths of AIC and BIC Be Shared?

Eichel, P. J., & Donghui Yan Yang, Y. (2005)

Sparse Estimators and the Oracle Property, or the Return of Hodges' Estimator

Leeb. H., & Pötshcer, B. M. (2008)

Presenter: Sarah Kim 2017.01.10

Outline

 ${\sf Can\ consistency\ and\ minimax\ rate\ optimality\ be\ shared?}$

Sparse estimators and the oracle property Bad risk behavior of sparse estimator

Setup

Consider the regression model

$$y_i = f(\mathbf{x}_i) + \varepsilon_i, \quad i = 1, 2, \dots, n,$$

where $\mathbf{x}_i = (x_{i1}, \dots, x_{id})$, f is the true regression function, and $\varepsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$.

▶ To estimate f, we consider linear models as follows:

$$y = f_k(\mathbf{x}, \theta_k) + \varepsilon,$$

where for each k, $\mathcal{F}_k = \{f_k(\mathbf{x}, \theta_k), \theta_k \in \Theta_k\}$ is a linear familiy of regression functions with θ_k being the parameter of a finite dimension m_k .

Minimax property of AIC

For a model selection criterion δ that select model \hat{k} , let

$$ASE(f_{\hat{k}}) = \frac{1}{n} \sum_{i=1}^{n} \left(f(\mathbf{x}_i) - f_{\hat{k}}(\mathbf{x}_i, \hat{\theta}_{\hat{k}}) \right)^2,$$

where $\hat{\theta}_{\hat{k}}$ is the LSE. The corresponding risk is

$$R(f, \delta; n) = \frac{1}{n} \sum_{i} \mathbb{E} \left(f(\mathbf{x}_{i}) - f_{\hat{k}}(\mathbf{x}_{i}, \hat{\theta}_{\hat{k}}) \right)^{2}.$$

Definition (Minimax-rate optimal)

 δ is said to be minimax-rate optimal over a class of regression functions \mathcal{F} if $\sup_{f \in \mathcal{F}} R(f; \delta; n)$ converges at the same rate as $\inf_{\hat{f}} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \mathbb{E} \left(f(\mathbf{x}_i) - \hat{f}(\mathbf{x}_i) \right)^2$, where \hat{f} is over all estimators based on the observations of y_1, \ldots, y_n .

Minimax property of AIC

Notations

- ightharpoonup T: the collection of all the models being considered
- N_m: the number of models that have the same dimension m in Γ (Here we assume that $\exists c > 0$ such that $N_m \leq e^{cm}$.)
- ▶ M_k : the projection matrix of model k, r_k : the rank of M_k

Proposition (Yang, 1999)

There exists C > 0 depending only on c such that for every f, we have

$$R(f, \delta_{AIC}; n) \leq C \inf_{k \in \Gamma} \left(\frac{\|f - M_k f\|_n^2}{n} + \frac{r_k}{n} \right).$$

Corollary

Suppose that model $k^* \in \Gamma$ is the true model. Then

$$\sup_{f \in \mathcal{F}_{k^*}} R(f; \delta_{AIC}; n) \le \frac{Cm_{k^*}}{n}.$$

Can consistency and minimax rate optimality be shared?

Assumptions (A1)

There exist two models $k_1, k_2 \in \Gamma$ such that

- $$\begin{split} 1. \ \ \mathcal{F}_{k_1} &= \{f_{k_1}(\mathbf{x}, \theta_{k_1}): \theta_{k_1} \in \Theta_{k_1}\} \text{ is a sub-linear space of} \\ \mathcal{F}_{k_2} &= \{f_{k_2}(\mathbf{x}, \theta_{k_2}): \theta_{k_2} \in \Theta_{k_2}\}; \end{split}$$
- 2. $\exists \phi(\mathbf{x}) \in \mathcal{F}_{k_2}$ orthogonal to \mathcal{F}_{k_1} with $\frac{1}{n} \sum_{i=1}^n \phi^2(\mathbf{x}_i)$ being bounded between two positive constants;
- 3. $\exists f_0 \in \mathcal{F}_{k_1}$ such that f_0 is not in any family $\mathcal{F}_k, k \in \Gamma$ that does not contain \mathcal{F}_{k_1} .

Theorem 1

Under A1, if any model selection method δ is consistent in selection, then we must have

$$n \sup_{\mathbf{f} \in \mathcal{F}_{k_2}} R(\mathbf{f}; \delta; \mathbf{n}) \to \infty.$$

Theorem 1 proof (1)

In a simple case, suppose that we have two models, model 0: $y_i = \alpha + \varepsilon_i$ and model 1: $y_i = \alpha + \beta x_i + \varepsilon_i$, $i = 1, 2, \dots, n$.

- Assume that $\bar{x}_n = \frac{1}{n} \sum_i x_i = 0$ and $\frac{1}{n} \sum_i x_i^2$ is bounded between two positive constants for all n.
- Let δ denote a consistent model selection criterion and let A_n be the event that model 1 is selected.
- ▶ Then under the squared error loss,

$$\mathbb{E}(f(x_i) - \hat{f}(x_i))^2 = \frac{\sigma^2}{n} + x_i^2 \mathbb{E}(\hat{\beta}I_{A_n} - \beta)^2 + 2x_i \mathbb{E}(\hat{\alpha} - \alpha)(\hat{\beta}I_{A_n} - \beta)$$

and we have

$$R(f,\delta;n) = \frac{\sigma^2}{n} + \left(\frac{1}{n}\sum_{i=1}^n x_i^2\right) \mathbb{E}(\hat{\beta}I_{A_n} - \beta)^2,$$

where $(\hat{\alpha}, \hat{\beta})$ is the LSE.

Theorem 1 proof (2)

- $\text{Note that } \sup_{|\beta| \leq c} \mathbb{E}_{\beta} (\sqrt{n} \hat{\beta} \textit{\textbf{I}}_{A_n} \sqrt{n} \beta)^2 = \sup_{|\beta| \leq c} [\mathbb{E}_{\beta} \textit{\textbf{n}} (\hat{\beta} \beta)^2 \textit{\textbf{I}}_{A_n} + \textit{\textbf{n}} \beta^2 \mathbb{P}_{\beta} (\textit{\textbf{A}}_n^c)].$
- ▶ To show $n \sup_f R(f, \delta; n) \to \infty$, it suffices to show that for $\forall c > 0$,

$$\sup_{|\beta| \le c} n\beta^2 \mathbb{P}_{\beta}(A_n^c) \to \infty. \tag{1}$$

- ▶ Since δ is consistent, we have $\mathbb{P}_{\beta=0}(A_n) \to 0$ as $n \to \infty$.
- ▶ Consider a testing problem with $H_0: \beta = 0$ vs $H_1: \beta > 0$. If we take A_n as the rejection region, δ becomes a testing rule with probability of type 1 error approaching 0.

Theorem 1 proof (3)

- ▶ Here we assume $\varepsilon_i \stackrel{i.i.d}{\sim} \mathcal{N}(0,1)$ and $\alpha = 0$.
- Let $f(y_1, \ldots, y_n; \beta)$ denote the joint probability density function. Then $\{f_\beta\}$ has a monotone likelihood ratio in $T(\mathbf{x}) = \sum_{i=1}^n x_i y_i$.
- ▶ By the Karlin-Rubin Theorem, a UMP test exists which is to reject H_0 when $\sum x_i y_i$ is larger than some constant . Choose h_n so that $\mathbb{P}_{\beta=0}(\sum x_i y_i \geq h_n) = \mathbb{P}_{\beta=0}(A_n)$.
- Let $A_{n,*}$ denote the event $\{\sum x_i y_i \geq h_n\}$. Then we have for all $\beta > 0$, $\mathbb{P}_{\beta}(A_{n,*}) \geq \mathbb{P}_{\beta}(A_n)$. Hence $\sup_{|\beta| \leq c} n\beta^2 \mathbb{P}_{\beta}(A_n^c) \geq \sup_{0 \leq \beta \leq c} n\beta^2 \mathbb{P}_{\beta}(A_{n,*}^c)$.
- Let $\beta_n = \min\left(\frac{h_n}{2\sum x_i^2}, c\right)$. Then we have $\sup_{0 \le \beta \le c} n\beta^2 \mathbb{P}_{\beta}(A_{n,*}^c) \ge n\beta_n^2 \mathbb{P}_{\beta_n}(A_{n,*}^c)$. Since $\sum x_i y_i$ is normally distributed, we can show that $\mathbb{P}_{\beta_n}(A_{n,*}^c) \to 1$.

Theorem 1 proof (4)

In general case, under A1

- 1. \mathcal{F}_{k_1} is a sub-linear space of \mathcal{F}_{k_2} ;
- 2. Let $\phi(x) \in \mathcal{F}_{k_2}$ that is orthogoanl to \mathcal{F}_{k_1} ;
- 3. Let $f_0 \in \mathcal{F}_{k_1}$ such that f_0 doe not belong to any other \mathcal{F}_k that does not contain \mathcal{F}_{k_1} .

Let B_n be the event that model k_1 is not selected for δ . If δ is consistent, then $P_{f_0}(B_n) \to 0$ as $n \to \infty$. Consider a simplified model $y_i = f_0(\mathbf{x}_i) + \beta \phi(\mathbf{x}_i) + \varepsilon_i$ and the testing problem $H_0: \beta = 0$ vs $H_1: \beta > 0$. Denote

- $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))', \ \mathbf{y} = (y_1, \dots, y_n)', \ \boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)', \\
 \boldsymbol{\phi} = (\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n))'$
- ▶ M_{k_1} : the projection matrix of model k_1 .

Then we have

$$\begin{split} \|\mathbf{f} - M_{k_1} \mathbf{y}\|_n^2 &= \|\mathbf{f} - M_{k_1} \mathbf{f}\|_n^2 + \varepsilon' M_{k_1} \varepsilon \\ &= \|\beta \phi - \beta M_{k_1} \phi\|_n^2 + \varepsilon' M_{k_1} \varepsilon \\ &= \beta^2 \|\phi\|_n^2 + \varepsilon' M_{k_1} \varepsilon. \end{split}$$

Theorem 1 proof (5)

Then the risk of the estimator associated with δ is

$$R(f, \delta; \mathbf{n}) = \frac{1}{n} \sum_{k \in \Gamma} \mathbb{E}_{\beta} \|\mathbf{f} - M_{k} \mathbf{y}\|_{n}^{2} I_{\{\hat{k} = k\}}$$

$$\geq \frac{1}{n} \mathbb{E}_{\beta} \|\mathbf{f} - M_{k_{1}} \mathbf{y}\|_{n}^{2} I_{\{\hat{k} = k_{1}\}}$$

$$\geq \frac{\beta^{2}}{n} \mathbb{E}_{\beta} \|\phi\|_{n}^{2} I_{\{\hat{k} = k_{1}\}}$$

$$= \frac{\sum_{i} \phi^{2}(\mathbf{x}_{i})}{n} \beta^{2} \mathbb{P}_{\beta} (\hat{k} = k_{1}).$$
(2)

Hence it is enough to show $\sup_{|\beta| < c} n\beta^2 \mathbb{P}_{\beta}(B_n^c) \to \infty.$

- Let $z_i = y_i f_0(\mathbf{x}_i)$. Then z_1, \dots, z_n are indep. with $z_i \sim \mathcal{N}(\beta \phi(\mathbf{x}_i), \sigma^2)$.
- $\{f(z_1,\ldots,z_n;\beta)\}$ has a MLR in $T(\mathbf{x})=\sum_i z_i \phi(\mathbf{x}_i)$.
- By the Karlin-Rubin Thm, and UMP test property we can show

$$\sup_{|\beta| \le c} n\beta^2 \mathbb{P}_{\beta}(B_n^c) \to \infty$$

Theorem 1 proof (6)

- Let h_n so that $\mathbb{P}_{\beta=0}(\sum_{i=1}^n z_i \phi(\mathbf{x}_i) > h_n) = \mathbb{P}_{\beta=0}(B_n) \to 0$. Let $B_{n,*}$ be denote the event $\{\sum_{i=1}^n z_i \phi(\mathbf{x}_i) \geq d_n\}$. Then a UMP test exists which is to reject H_0 when $\sum_i z_i \phi(\mathbf{x}_i)$ is larger than h_n .
- ▶ By the UMP property of $B_{n,*}$, for any $\beta > 0$, $\mathbb{P}_{\beta}(B_{n,*}) \geq \mathbb{P}_{\beta}(B_n)$, hence

$$\sup_{|\beta| \leq c} n\beta^2 \mathbb{P}_{\beta}(B^{\mathsf{c}}_{\mathsf{n}}) \geq \sup_{0 \leq \beta \leq c} n\beta^2 \mathbb{P}_{\beta}(B^{\mathsf{c}}_{\mathsf{n},*})$$

▶ Let $\beta_n = \min\left(\frac{h_n}{2\sum \phi^2(\mathbf{x}_i)}, c\right)$. Then

$$\sup_{0 < \beta < c} n\beta^2 \mathbb{P}_{\beta}(B^c_{n,*}) \geq n\beta_n^2 \mathbb{P}_{\beta_n}(B^c_{n,*})$$

and (note that $\mathbf{h}_n/\sqrt{n} \to \infty$ as $n \to \infty$.)

$$\mathbb{P}_{\beta_n}(B_{n,*}^c) = \mathbb{P}_{\beta_n}(\sum_i z_i \phi(\mathbf{x}_i) < h_n) = \mathbb{P}\left(\mathcal{N}(0,1) < \frac{h_n - \beta_n \sum_i \phi^2(\mathbf{x}_i)}{\sqrt{\sigma^2 \sum_i \phi^2(\mathbf{x}_i)}}\right)$$
$$\geq \mathbb{P}\left(\mathcal{N}(0,1) < \frac{h_n}{2\sqrt{\sigma^2 \sum_i \phi^2(\mathbf{x}_i)}}\right) \to 1, \quad n \to \infty.$$

Outline

Can consistency and minimax rate optimality be shared?

Sparse estimators and the oracle property

Bad risk behavior of sparse estimator

Numerical results

Consider

$$y_i = \mathbf{x}_i' \theta + \varepsilon_i, \quad i = 1, \dots, n,$$

where $\mathbf{x}_i \in \mathbb{R}^d$ satisfy $\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i' \to Q > 0$ as $n \to \infty$.

 \triangleright $\varepsilon_i \overset{i.i.d.}{\sim} f$ with mean 0 and variance 1 where a density f possesses an absolutely continuous derivative df/dx satisfying

$$0 < \int_{-\infty}^{\infty} \left\{ (df(x)/dx)/f(x) \right\}^2 f(x) dx < \infty.$$

- Let $\mathbb{P}_{n,\theta}$ denote the distribution of the sample $(y_1,\ldots,y_n)'$ and let $\mathbb{E}_{n,\theta}$ denote the corresponding expectation operator.
- ► For $\theta \in \mathbb{R}^d$, let $r(\theta)$ denote a $d \times 1$ vector where $r_i(\theta) = 0$ if $\theta_i = 0$ and $r_i(\theta) = 1$ if $\theta_i \neq 0$.

Bad risk behavior of sparse estimator

Sparsity-type condition

An estimator $\hat{\theta}$ for θ based on the sample $(y_1,\ldots,y_n)'$ is said to satisfy the sparsity-type condition if for every $\theta\in\mathbb{R}^d$

$$\mathbb{P}_{n,\theta}\left(r(\hat{\theta}) \le r(\theta)\right) \to 1 \quad \text{as } n \to \infty,$$
 (3)

where the inequality sign is to be interpreted componentwise.

Theorem 2

Let $\hat{\theta}$ be an aribitrary estimator for θ that satisfies the sparsity-type condition (3).

Then

$$\sup_{\theta \in \mathbb{R}^d} \mathbb{E}_{n,\theta} \left[n(\hat{\theta} - \theta)'(\hat{\theta} - \theta) \right] \to \infty \tag{4}$$

for $n \to \infty$. More generally, let $\ell : \mathbb{R}^d \to \mathbb{R}$ be a nonnegative loss function. Then

$$\sup_{\theta \in \mathbb{R}^d} \mathbb{E}_{n,\theta} \ell(\sqrt{n}(\hat{\theta} - \theta)) \to \sup_{s \in \mathbb{R}^d} \ell(s) \tag{5}$$

for $n \to \infty$.

Theorem 2 proof

Let $\theta_n = -n^{-1/2}s$, $s \in \mathbb{R}^d$ arbitrary. And note that

$$\sup_{u \in \mathbb{R}^d} \ell(u) = \sup_{\theta \in \mathbb{R}^d} \ell(\sqrt{n}(\hat{\theta} - \theta)) = \mathbb{E}_{n,\theta} \sup_{\theta \in \mathbb{R}^d} \ell(\sqrt{n}(\hat{\theta} - \theta)) \\
\geq \mathbb{E}_{n,\theta} \ell(\sqrt{n}(\hat{\theta} - \theta)), \quad \forall \theta \in \mathbb{R}^d$$
(6)

Then we have

$$\sup_{u \in \mathbb{R}^{d}} \ell(u) \ge \sup_{\theta \in \mathbb{R}^{d}} \mathbb{E}_{n,\theta} \ell(\sqrt{n}(\hat{\theta} - \theta)) \ge \mathbb{E}_{n,\theta_{n}} \ell(\sqrt{n}(\hat{\theta} - \theta_{n}))$$

$$\ge \mathbb{E}_{n,\theta_{n}} \Big[\ell(\sqrt{n}(\hat{\theta} - \theta_{n})) I(\hat{\theta} = 0) \Big] = \ell(-\sqrt{n}\theta_{n}) \mathbb{P}_{n,\theta_{n}}(r(\hat{\theta}) = 0)$$

$$= \ell(s) \mathbb{P}_{n,\theta_{n}}(r(\hat{\theta}) = 0).$$
(7)

- ▶ By the sparsity-type condition, $\mathbb{P}_{n,0}(r(\hat{\theta})=0) \to 1$ as $n \to \infty$.
- ▶ Under our assumption, the model is locally asymptotical normal. Hence we can show that the sequence of probability measures \mathbb{P}_{n,θ_n} is contiguous w.r.t. $\mathbb{P}_{n,0}$.

So,
$$\sup_{\theta \in \mathbb{R}^d} \mathbb{E}_{n,\theta} \ell(\sqrt{n}(\hat{\theta} - \theta)) \to \sup_{s \in \mathbb{R}^d} \ell(s) \text{ as } n \to \infty.$$

Let $(\Omega_n, \mathcal{A}_n)$ be measurable spaces, each equipped with a pair of probability measures P_n and Q_n .

Definition (Contiguity)

The sequence Q_n is contiguous with respect to the sequence P_n if $P_n(A_n) \to 0$ implies $Q_n(A_n) \to 0$ for every sequence of measurable sets A_n . This is denoted $Q_n \triangleleft P_n$. Lemma 1 (Le Cam's first lemma)

$$Q_n \triangleleft P_n$$

 \Leftrightarrow If dP_n/dQ_n converges in distribution under Q_n to a random variable U, then P(U>0)=1.

Lemma 2

Consider the linear model $y_i = \mathbf{x}_i'\theta + \varepsilon_i, \ i=1,\ldots,n$, where $\mathbf{x}_i \in \mathbb{R}^d$ and $\varepsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$. If $\theta_n - \vartheta_n = O(n^{-1/2})$ and $n^{-1} \sum_{i=1}^n \mathbf{x}_i' \mathbf{x}_i \to Q > 0$ as $n \to \infty$, then $\mathbb{P}_{n,\vartheta_n}$ is contiguous w.r.t. \mathbb{P}_{n,θ_n} .

Lemma 2 proof

Suppose that $\theta_n - \vartheta_n = O(n^{-1/2})$ and $n^{-1} \sum_{i=1}^n \mathbf{x}_i' \mathbf{x}_i \to Q > 0$ as $n \to \infty$. First, we will show that $d\mathbb{P}_{n,\theta_n}/d\mathbb{P}_{n,\vartheta_n} \overset{d}{\to} U$ under $\mathbb{P}_{n,\vartheta_n}$ where U is almost surely positive. Then by Le Cam's first lemma, $\mathbb{P}_{n,\vartheta_n} \triangleleft \mathbb{P}_{n,\theta_n}$.

▶ Under $\mathbb{P}_{n,\vartheta_n}$, $y_i \stackrel{indep.}{\sim} \mathcal{N}(\mathbf{x}_i^{\prime}\vartheta_n, 1)$, for $i = 1, \ldots, n$. Hence

$$\log \frac{d\mathbb{P}_{n,\theta_n}}{d\mathbb{P}_{n,\vartheta_n}} = \sum_{i=1}^n \mathbf{x}_i'(\theta_n - \vartheta_n)y_i + \sum_{i=1}^n \frac{(\mathbf{x}_i'\vartheta_n)^2 - (\mathbf{x}_i'\theta_n)^2}{2} \sim \mathcal{N}(-\frac{1}{2}A_n, A_n),$$

where
$$A_n = (\theta_n - \vartheta_n)' \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i' (\theta_n - \vartheta_n)$$
.

- ▶ Since $\theta_n \vartheta_n = O(n^{-1/2})$, any subsequence contain a further subsequence s.t. along this subsequence $\sqrt{n}(\theta_n \vartheta_n) \to \alpha$ for some $\alpha \in \mathbb{R}^d$.
- ▶ $\log \left(d\mathbb{P}_{n,\theta_n}/d\mathbb{P}_{n,\vartheta_n} \right)$ converges in distribution under $\mathbb{P}_{n,\vartheta_n}$ to $Z \sim \mathcal{N}(-A/2,A)$ where $A = \alpha' Q \alpha$. Hence $d\mathbb{P}_{n,\theta_n}/d\mathbb{P}_{n,\vartheta_n} \overset{d}{\to} \exp(Z)$ which is always positive.

Numerical results on the SCAD estimator

Consider $y_i = \mathbf{x}_i' \theta + \varepsilon_i$, i = 1, ..., n where

- ▶ $\theta \in \mathbb{R}^d$ and d = 8, $\varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, n = 60, 120, 240, 480, 960;
- \mathbf{x}_i are $\mathcal{N}_d(0, \Sigma)$, $\Sigma_{ij} = \rho^{|i-j|}$ with $\rho = 0.5$;
- ► True parameter: $\theta_n = \theta_0 + (\gamma/\sqrt{n}) \times \eta$, $\theta_0 = (3, 1.5, 0, 0, 2, 0, 0, 0)'$, $\eta = (0, 0, 1, 0, 1, 0, 1, 1, 1)'$, γ is the sequence with length 101 from 0 to 8.

Tuning parameter of SCAD estimator:

- \rightarrow a = 3.7 (Fan and Li, 2001);
- ▶ the range of λ 's : $\{\delta \frac{\hat{\sigma}}{\sqrt{n}} \frac{\log n}{\log 60} : \delta = 0.9, 1.1, 1.3, \ldots, 2\}$, $\hat{\sigma}^2$ denotes SSE/(n-d) from a least-squares fit.
- \checkmark Then $\lambda \to 0$ and $\sqrt{n}\lambda \to \infty$, it guarantees that the resulting SCAD estimator possesses the Oracle property.

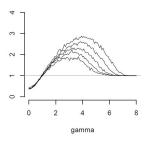
Numerical results on the SCAD estimator

Two types of performance measures are considered:

- ▶ Median relative model error, $ME(\hat{\theta}) = (\hat{\theta} \theta)'\Sigma(\hat{\theta} \theta);$
- ▶ Relative mean squared error, $RE(\hat{\theta}) = ME(\hat{\theta})/ME(\hat{\theta}_{LS})$.

Median Relative Model Error of SCAD2

Relative Mean Squared Error of SCAD2



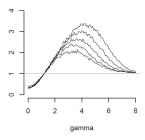


Figure 1: Monte Carlo performance estimates for ME, RE, under the trur parameter $\theta_n = \theta_0 + (\gamma/\sqrt{n})(0,0,1,1,0,1,1,1)'$ each based on 500 Monte Carlo replications. Larger sample size correspond to larger maximal errors.