Sparse CCA via Precision Adjusted Iterative Thresholding

Speaker : Semin Choi

Department of Statistics, Seoul National University, South Korea

January 10, 2017

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sparse CCA via Precision Adjusted Iterative Thresholding

- Let (X, Y) ∈ ℝ^{p1} × ℝ^{p2} denote random vectors with covariances (Σ₁, Σ₂) and cross-covariance Σ₁₂.
- CCA finds pairs of linear projections of the two views, (a'X, b'Y) that are maximally correlated:

Proposition 1.

When Σ_{12} is of rank 1, the solution (up to sign jointly) of CCA problem is (θ, η) if and only if the covariance structure between X and Y can be written as

$$\Sigma_{12} = \lambda \Sigma_1 \theta \eta^T \Sigma_2$$

where $0 < \lambda \leq 1$, $\theta^T \Sigma_1 \theta = 1$ and $\eta^T \Sigma_2 \eta = 1$. In other words, the correlation between $a^T X$ and $b^T Y$ are maximized by $\operatorname{corr}(\theta^T X, \eta^T Y)$, and λ is the canonical correlation between X and Y.

Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 2.

For general Σ_{12} with rank $r \ge 1$, the solution (up to sign jointly) of CCA problem is (θ_1, η_1) if and only if the covariance structure between X and Y can be written as

▲□▶▲□▶▲□▶▲□▶ □ のQで

$$\Sigma_{12} = \Sigma_1 \bigg(\sum_{i=1}^r \lambda_i \theta_i \eta_i^T \bigg) \Sigma_2$$

where $\lambda_1 > \lambda_2 \ge ... \ge \lambda_r > 0$, $\theta_i^T \Sigma_1 \theta_j = \mathbb{I}(i=j) = \eta_i^T \Sigma_2 \eta_j$.

CAPIT : Iterative Thresholding

Algorithm 1 : CAPIT

Input : Sample covariance matrices $\hat{\Sigma}_{12}$; Estimators of precision matrix $\hat{\Omega}_1, \hat{\Omega}_2$; Initialization pair $\alpha^{(0)}, \beta^{(0)}$; Thresholding level γ_1, γ_2 . **Output** : Canonical direction estimator $\alpha^{(\infty)}, \beta^{(\infty)}$. Set $\hat{A} = \hat{\Omega}_1 \hat{\Sigma}_{12} \hat{\Omega}_2$;

repeat

• Right Multiplication:
$$\omega^{l,(i)} = \hat{A}\beta^{(i-1)}$$
;

- Left Thresholding : $\omega_{th}^{l,(i)} = T(\omega^{l,(i)}, \gamma_1);$
- Left Normalization : $\alpha^{(i)} = \omega_{th}^{l,(i)} / \|\omega_{th}^{l,(i)}\|;$
- Left Multiplication : $\omega^{r,(i)} = \alpha^{(i)} \hat{A}$;
- Right Thresholding : $\omega_{th}^{r,(i)} = T(\omega_{th}^{r,(i)}, \gamma_2);$

• Right Normalization :
$$\beta^{(i)} = \omega_{th}^{r,(i)} / \|\omega_{th}^{r,(i)}\|$$

ntil Convergence of $\alpha^{(i)}$ and $\beta^{(i)}$.

CAPIT : Iterative Thresholding

• CAPIT without thresholding = SVD-power method.

•
$$\Omega_1 \Sigma_{12} \Omega_2 \Rightarrow \Omega_1^{1/2} \Sigma_{12} \Omega_2^{1/2}$$
?

• Let
$$\Sigma_1^{1/2} \theta_i = \theta'_i$$
 and $\Sigma_2^{1/2} \eta_i = \eta'_i$.

- Then, $\Sigma_{12} = \Sigma_1^{1/2} \left(\sum_{i=1}^r \lambda_i \theta'_i \eta'^T_i \right) \Sigma_2^{1/2}$ and $\|\theta'_i\|_2 = \|\eta'_i\|_2 = 1.$
- It is same as the original CCA algorithm.

Initialization by Coordinate Thresholding

Algorithm 2 (CAPIT : Initialization by Coordinate Thresholding)

Input : Sample covariance matrices $\hat{\Sigma}_{12}$; Estimators of precision matrix $\hat{\Omega}_1, \hat{\Omega}_2$; Thresholding level t_{ij} . **Output** : Initializer $\alpha^{(0)}$ and $\beta^{(0)}$. Set $\hat{A} = \hat{\Omega}_1 \hat{\Sigma}_{12} \hat{\Omega}_2$;

Coordinate selection : pick the index sets B₁ and B₂ of the coordinates of θ and η respectively as follows,

$$B_1 = \{i : \max_j |\hat{a}_{ij}| / t_{ij} \ge \sqrt{\frac{\log p_1}{n}} \},\$$

$$B_2 = \{j : \max_i |\hat{a}_{ij}| / t_{ij} \ge \sqrt{\frac{\log p_2}{n}} \};\$$

2 Reduced SVD : compute the leading pair of singular vectors $(\alpha^{(0),B_1}, \beta^{(0),B_2})$ on the submatrix \hat{A}_{B_1,B_2} ;

Seco-padding procedure : construct the initializer $(\alpha^{(0)}, \beta^{(0)})$ by zero-padding $(\alpha^{(0),B_1}, \beta^{(0),B_2})$ on index sets B_1^c and B_2^c respectively, $\alpha^{(0)}_{B_1} = \alpha^{(0),B_1}, \alpha^{(0)}_{B_1^c} = 0, \beta^{(0)}_{B_2} = \beta^{(0),B_2}, \beta^{(0)}_{B_2^c} = 0$

The Single Canonical Pair Model

• We propose a probabilistic model of (X, Y), so that the canonical directions (θ, η) are explicitly modeled in the joint distribution of (X, Y).

The Single Canonical Pair Model

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \Sigma_1 & \lambda \Sigma_1 \theta \eta^T \Sigma_2 \\ \lambda \Sigma_2 \eta \theta^T \Sigma_1 & \Sigma_2 \end{pmatrix} \right) \quad (1)$$

with $\Sigma_1 > 0, \Sigma_2 > 0, \theta^T \Sigma_1 \theta = \eta^T \Sigma_2 \eta = 1$ and $0 < \lambda \leq 1$.

- We consider the idea of data splitting.
- Suppose we have 2n i.i.d. copies $(X_i, Y_i)_{1 \le i \le 2n}$.
- $\hat{\Sigma}_{12} = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i^T.$
- The reason for data splitting is that we can write the matrix \hat{A} in an alternative form :

$$\hat{A} = \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_i \tilde{Y}_i^T$$

where $\tilde{X}_i = \hat{\Omega}_1 X_i$ and $\tilde{Y}_i = \hat{\Omega}_2 Y_i$ for all i = 1, ..., n.

Conditioning on (X_i, Y_i)_{n+1≤i≤2n}, the transformed data (X̃_i, Ỹ_i)_{1≤i≤n} are still i.i.d.

- Conditioning on $(X_i, Y_i)_{n+1 \le i \le 2n}$, the expectation of \hat{A} is $\lambda \alpha \beta^T$ where $\alpha = \hat{\Omega}_1 \Sigma_1 \theta$ and $\beta = \hat{\Omega}_2 \Sigma_2 \eta$.
- We consider the loss function $L(a,b)^2 = 2|\sin \angle (a,b)|^2$
- It is easy to calculate that

$$L(a,b) = \left\| \frac{aa^{T}}{\|a\|^{2}} - \frac{bb^{T}}{\|b\|^{2}} \right\|_{F}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

To achieve statistical consistency, we need some assumptions on the interesting part (θ, η) and nuisance part $(\Sigma_1, \Sigma_2, \lambda)$.

Assumption A - Sparsity Condition on (θ, η) :

We assume θ and η are in the weak l_q ball, with $0 \le q \le 2$. i.e.

$$|\theta_{(k)}|^q \le s_1 k^{-1}, \ |\eta_{(k)}|^q \le s_2 k^{-1},$$

where $\theta_{(k)}$ is the k-th largest coordinate by magnitude. Let $p = p_1 \lor p_2$ and $s = s_1 \lor s_2$. The sparsity level s_1 and s_2 satisfy the following condition

The sparsity level s_1 and s_2 satisfy the following condition,

$$s = o\left(\left(\frac{n}{\log p}\right)^{\frac{1}{2} - \frac{q}{4}}\right)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Assumption B - General Conditions on $(\Sigma_1, \Sigma_2, \lambda)$:

• (a) We assume there exist constants w and W, such that

$$0 < w \le \lambda_{\min}(\Sigma_i) \le \lambda_{\max}(\Sigma_i) \le W < \infty$$

for i = 1, 2.

- (b) In order that the signals do not vanish, we assume the canonical correlation is bounded below by a positive constant C_λ, i.e. 0 < C_λ ≤ λ ≤ 1.

$$\xi_{\Omega} = \|\hat{\Omega}_1 \Sigma_1 - I\| \vee \|\hat{\Omega}_2 \Sigma_2 - I\| = o(1),$$

with probability at least $1 - O(p^{-2})$.

Theorem 1(Convergence Rates)

Assume the Assumptions A and B hold. Let $(\alpha^{(k)}, \beta^{(k)})$ be the sequence from Algorithm 1, with the initializer $(\alpha^{(0)}, \beta^{(0)})$ calculated by Algorithm 2. The thresholding levels are

$$t_{ij}, \quad \gamma_1 = c_1 \sqrt{\frac{\log p}{n}}, \quad \gamma_2 = c_2 \sqrt{\frac{\log p}{n}}$$

for sufficiently large constants (t_{ij}, c_1, c_2) . Then with probability at least $1 - O(p^{-2})$, we have

$$L(\alpha^{(k)}, \theta)^{2} \vee L(\beta^{(k)}, \eta)^{2} \leq C\left(s\left(\frac{\log p}{n}\right)^{1-q/2} + \|(\hat{\Omega}_{1}\Sigma_{1} - I)\theta\|^{2} \vee \|(\hat{\Omega}_{2}\Sigma_{2} - I)\eta\|^{2}\right)$$

for all $k = 1, 2, ..., K$ with $K = O(1)$ and some constant $C > 0$.

Data-Driven Thresholding

$$\begin{split} t_{ij} &= \frac{20\sqrt{2}}{9} \Big(\sqrt{\|\hat{\Omega}_1\|\hat{\omega}_{2,jj}} + \sqrt{\|\hat{\Omega}_2\|\hat{\omega}_{1,ii}} + \sqrt{\hat{\omega}_{1,ii}\hat{\omega}_{2,jj}} + \sqrt{8\|\hat{\Omega}_1\|\|\hat{\Omega}_2\|/3} \\ \gamma_1 &= (0.17\min_{i,j} t_{ij}\|\hat{\Omega}_2\|^{1/2} + 2.1\|\hat{\Omega}_2\|^{1/2}\|\hat{\Omega}_1\|^{1/2} + 7.5\|\hat{\Omega}_2\|)\sqrt{\frac{\log p}{n}} \\ \gamma_2 &= (0.17\min_{i,j} t_{ij}\|\hat{\Omega}_1\|^{1/2} + 2.1\|\hat{\Omega}_1\|^{1/2}\|\hat{\Omega}_2\|^{1/2} + 7.5\|\hat{\Omega}_1\|)\sqrt{\frac{\log p}{n}} \\ \delta_1 &= \delta_2 = 0.08w^{1/2}\min_{i,j} t_{ij} \quad \text{(in the next page)} \end{split}$$

・ ロ ト ・ 母 ト ・ 臣 ト ・ 臣 ・ の へ ()・

Construction of the Oracle Sequence :

$$H_1 = \left\{ k : |\alpha_k| \ge \delta_1 \sqrt{\frac{\log p_1}{n}} \right\}, \quad H_2 = \left\{ k : |\beta_k| \ge \delta_2 \sqrt{\frac{\log p_2}{n}} \right\}$$

and $L_1 = H_1^c$, $L_2 = H_2^c$.

- Then, we define the oracle version of $\hat{A} : \hat{A}^{\text{ora}} = \begin{pmatrix} \hat{A}_{H_1H_2} & 0\\ 0 & 0 \end{pmatrix}$.
- We construct the oracle initializer (α^{(0),ora}, β^{(0),ora}) based on an oracle version of Algorithm 2 with the sets B₁ and B₂ replaced by B₁^{ora} = B₁ ∩ H₁ and B₂^{ora} = B₂ ∩ H₂.

▲□▶▲□▶▲□▶▲□▶ □ のQで

 Feeding the oracle initializer (α^{(0),ora}, β^{(0),ora}) and the matrix Â^{ora} into Algorithm 1, we get the oracle sequence (α^{(k),ora}, β^{(k),ora}).

- We are going to bound $L(\hat{\alpha}^{\text{ora}}, \alpha)$ and $L(\hat{\beta}^{\text{ora}}, \beta)$ where $(\hat{\alpha}^{\text{ora}}, \hat{\beta}^{\text{ora}})$ is the first pair of singular vectors of \hat{A}^{ora} .
- Show that the oracle sequence (α^{(k),ora}, β^{(k),ora}) converges to (â^{ora}, β̂^{ora}) after finite steps of iterations.

Show that the estimating sequence (α^(k), β^(k)) and the oracle sequence (α^{(k),ora}, β^{(k),ora}) are identical with high probability.

Lemma 1

Under Assumptions A and B, we have

$$L(\hat{\alpha}^{\text{ora}}, \alpha)^2 \vee L(\hat{\beta}^{\text{ora}}, \beta)^2 \le C\left(s\left(\frac{\log p}{n}\right)^{1-q/2} + \|\theta - \alpha\|^2 \vee \|\eta - \beta\|^2\right)$$

with probability at least $1 - O(p^{-2})$ for some constant C > 0.

 Let A^{ora} = (A_{H1H2} 0 0 0) and (α^{ora}, β^{ora}) be the first singular vectors of A^{ora}.
L(â^{ora}, α) ≤ L(â^{ora}, α^{ora}) + L(α^{ora}, α)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Lemma 2

Under Assumptions A and B, we have

$$L(\alpha^{(k),\text{ora}}, \hat{\alpha}^{\text{ora}})^2 \le C\left(s\left(\frac{\log p}{n}\right)^{1-q/2} + \|\theta - \alpha\|^2\right)$$

for all $k \ge 1$ with probability at least $1 - O(p^{-2})$ for some constant C > 0.

Lemma 3

Under Assumptions A,B and the current choice of (γ_1, γ_2) , $(\alpha^{(k),\text{ora}}, \beta^{(k),\text{ora}}) = (\alpha^{(k)}, \beta^{(k)})$ for all k = 1, ..., K, K = O(1), with probability at least $1 - O(p^{-2})$.

•
$$\mathcal{G}_{q_0}(s_0, p) = \left\{ \Omega = (\omega_{ij})_{p \times p} : \max_j |\omega_{j(k)}|^{q_0} \le s_0 k^{-1} \text{ for all } k \right\}$$
 for $0 \le q_0 \le 1$.

Corollary 1(Convergence Rates)

Assume the Assumptions A and B holds, $\Omega_i \in \mathcal{G}_{q_0}(s_0, p_i), i = 1, 2, \|\Omega_i\|_{l_1} \leq w^{-1}$ and $s_0^2 = O((n/\log p)^{1-q_0})$. $\hat{\Omega}_i$ is obtained by applying CLIME procedure in Cai et al. (2011). Then, with probability at least $1 - O(p^{-2})$, we have

▲□▶▲□▶▲□▶▲□▶ □ のQで

$$L(\alpha^{(k)}, \theta)^2 \vee L(\beta^{(k)}, \eta)^2 \le C \left(s \left(\frac{\log p}{n} \right)^{1-q/2} + s_0^2 \left(\frac{\log p}{n} \right)^{1-q_0} \right)$$

for all k = 1, 2, ..., K with K = O(1) and some constant C > 0.

Minimax Lower Bound

$$\mathcal{F}_{q}^{p_{1},p_{2}}(s_{1},s_{2},C_{\lambda}) = \left\{ \begin{array}{c} N(0,\Sigma):\Sigma \text{ is specified in }(1), \lambda \in (C_{\lambda},1) \\ \Sigma_{i} = I_{p_{i} \times p_{i}}, i = 1,2, \\ |\theta|_{(k)}^{q} \in s_{1}k^{-1}, |\eta|_{(k)}^{q} \leq s_{2}k^{-1}, \text{ for all } k. \end{array} \right\}$$

Theorem 2: Minimax lower bound for known variance

For any $q \in [0, 2]$, we assume that $s_i \left(\frac{n}{\log p_i}\right)^{q/2} = o(p_i)$ for i = 1, 2 and $\log p_1 \asymp \log p_2$. Moreover, we also assume $s \left(\frac{\log p}{n}\right)^{1-q/2} \le c_0$ for some constant $c_0 > 0$. Then we have

$$\inf_{\hat{\theta},\hat{\eta}} \sup_{P \in \mathcal{F}} \mathbb{E}_P \Big(L^2(\hat{\theta}, \theta) \vee L^2(\hat{\eta}, \eta) \Big) \ge Cs \Big(\frac{\log p}{n} \Big)^{1-q/2}$$

where $\mathcal{F} = \mathcal{F}_q^{p_1, p_2}(s_1, s_2, C_{\lambda})$ and C is a constant only depending on q and C_{λ} .

Minimax Lower Bound

$$\mathcal{F}_{q,q_{0}}^{p_{1},p_{2}}(s_{0},s_{1},s_{2},C_{\lambda},w,W) = \begin{cases} N(0,\Sigma) : \Sigma \text{ is specified in } (1), \lambda \in (C_{\lambda},1) \\ \Sigma_{i}^{-1} \in \mathcal{G}_{q_{0}}(s_{0},p_{i}), W^{-1} \leq \lambda_{\min}(\Sigma_{i}^{-1}), \|\Sigma_{i}^{-1}\|_{l_{1}} \leq w^{-1} \\ \|\theta\|_{(k)}^{q} \in s_{1}k^{-1}, |\eta|_{(k)}^{q} \leq s_{2}k^{-1}, \text{ for all } k. \end{cases}$$

• Note that
$$\mathcal{F}_{q}^{p_{1},p_{2}}(s_{1},s_{2},C_{\lambda}) \subset \mathcal{F}_{q,q_{0}}^{p_{1},p_{2}}(s_{0},s_{1},s_{2},C_{\lambda},w,W).$$

• The lower bound is same as above.

Corollary 2: Minimax rate

Under the assumptions in Corollary 1 and Theorem 2 and assume $n = o(p^h)$ for some h > 0, we have

$$\inf_{(\hat{\theta},\hat{\eta})} \sup_{P \in \mathcal{F}} \mathbb{E}_P \Big(L^2(\hat{\theta},\theta) \lor L^2(\hat{\eta},\eta) \Big) \asymp s \Big(\frac{\log p}{n} \Big)^{1-q/2}$$

for $\mathcal{F} = \mathcal{F}_{q,q_0}^{p_1,p_2}(s_0, s_1, s_2, C_{\lambda}, w, W)$, provided that $s_0^2 \left(\frac{\log p}{n}\right)^{1-q_0} \leq Cs \left(\frac{\log p}{n}\right)^{1-q/2}$ for some constant C > 0.