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Sparse CCA via Precision Adjusted Iterative Thresholding

Let (X,Y ) ∈ Rp1 × Rp2 denote random vectors with covariances (Σ1,Σ2)
and cross-covariance Σ12.

CCA finds pairs of linear projections of the two views, (a′X, b′Y ) that are
maximally correlated:

Proposition 1.

When Σ12 is of rank 1, the solution (up to sign jointly) of CCA problem is (θ, η) if
and only if the covariance structure between X and Y can be written as

Σ12 = λΣ1θη
TΣ2

where 0 < λ ≤ 1, θTΣ1θ = 1 and ηTΣ2η = 1. In other words, the correlation
between aTX and bTY are maximized by corr(θTX, ηTY ), and λ is the canonical
correlation between X and Y .



Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 2.

For general Σ12 with rank r ≥ 1, the solution (up to sign jointly) of CCA problem is
(θ1, η1) if and only if the covariance structure between X and Y can be written as

Σ12 = Σ1

( r∑
i=1

λiθiη
T
i

)
Σ2

where λ1 > λ2 ≥ ... ≥ λr > 0, θTi Σ1θj = I(i = j) = ηTi Σ2ηj .



CAPIT : Iterative Thresholding

Algorithm 1 : CAPIT

Input : Sample covariance matrices Σ̂12;
Estimators of precision matrix Ω̂1, Ω̂2;
Initialization pair α(0), β(0);
Thresholding level γ1, γ2.
Output : Canonical direction estimator α(∞), β(∞).
Set Â = Ω̂1Σ̂12Ω̂2;
repeat

Right Multiplication: ωl,(i) = Âβ(i−1);

Left Thresholding : ωl,(i)th = T (ωl,(i), γ1);

Left Normalization : α(i) = ω
l,(i)
th /‖ωl,(i)th ‖;

Left Multiplication : ωr,(i) = α(i)Â;

Right Thresholding : ωr,(i)th = T (ω
r,(i)
th , γ2);

Right Normalization : β(i) = ω
r,(i)
th /‖ωr,(i)th ‖;

until Convergence of α(i) and β(i).



CAPIT : Iterative Thresholding

CAPIT without thresholding = SVD-power method.

Ω1Σ12Ω2 ⇒ Ω
1/2
1 Σ12Ω

1/2
2 ?

Let Σ
1/2
1 θi = θ′i and Σ

1/2
2 ηi = η′i.

Then, Σ12 = Σ
1/2
1

(∑r
i=1 λiθ

′
iη

′T
i

)
Σ

1/2
2

and ‖θ′i‖2 = ‖η′i‖2 = 1.
It is same as the original CCA algorithm.



Initialization by Coordinate Thresholding

Algorithm 2 (CAPIT : Initialization by Coordinate Thresholding)

Input : Sample covariance matrices Σ̂12;
Estimators of precision matrix Ω̂1, Ω̂2;
Thresholding level tij .
Output : Initializer α(0) and β(0).
Set Â = Ω̂1Σ̂12Ω̂2;

1 Coordinate selection : pick the index sets B1 and B2 of the coordinates of θ
and η respectively as follows,

B1 = {i : maxj |âij |/tij ≥
√

log p1
n
},

B2 = {j : maxi |âij |/tij ≥
√

log p2
n
};

2 Reduced SVD : compute the leading pair of singular vectors (α(0),B1 , β(0),B2)
on the submatrix ÂB1,B2 ;

3 Zero-padding procedure : construct the initializer (α(0), β(0)) by zero-padding
(α(0),B1 , β(0),B2 ) on index sets Bc1 and Bc2 respectively,
α

(0)
B1

= α(0),B1 , α
(0)
Bc

1
= 0, β

(0)
B2

= β(0),B2 , β
(0)
Bc

2
= 0



The Single Canonical Pair Model

We propose a probabilistic model of (X,Y ), so that the canonical directions
(θ, η) are explicitly modeled in the joint distribution of (X,Y ).

The Single Canonical Pair Model(
X
Y

)
∼ N

((
0
0

)
,

(
Σ1 λΣ1θη

TΣ2

λΣ2ηθ
TΣ1 Σ2

))
(1)

with Σ1 > 0,Σ2 > 0, θTΣ1θ = ηTΣ2η = 1 and 0 < λ ≤ 1.



Convergence Rates

We consider the idea of data splitting.

Suppose we have 2n i.i.d. copies (Xi, Yi)1≤i≤2n.

Σ̂12 = 1
n

∑n
i=1 XiY

T
i .

The reason for data splitting is that we can write the matrix Â in an alternative
form :

Â =
1

n

n∑
i=1

X̃iỸ
T
i

where X̃i = Ω̂1Xi and Ỹi = Ω̂2Yi for all i = 1, ..., n.

Conditioning on (Xi, Yi)n+1≤i≤2n, the transformed data (X̃i, Ỹi)1≤i≤n are
still i.i.d.



Convergence Rates

Conditioning on (Xi, Yi)n+1≤i≤2n, the expectation of Â is λαβT where
α = Ω̂1Σ1θ and β = Ω̂2Σ2η.

We consider the loss function L(a, b)2 = 2| sin∠(a, b)|2

It is easy to calculate that

L(a, b) =

∥∥∥∥ aaT‖a‖2 − bbT

‖b‖2

∥∥∥∥
F



Convergence Rates

To achieve statistical consistency, we need some assumptions on the interesting part
(θ, η) and nuisance part (Σ1,Σ2, λ).

Assumption A - Sparsity Condition on (θ, η):

We assume θ and η are in the weak lq ball, with 0 ≤ q ≤ 2. i.e.

|θ(k)|q ≤ s1k
−1, |η(k)|q ≤ s2k

−1,

where θ(k) is the k-th largest coordinate by magnitude. Let p = p1 ∨ p2 and
s = s1 ∨ s2.
The sparsity level s1 and s2 satisfy the following condition,

s = o

(( n

log p

) 1
2
− q

4

)



Convergence Rates

Assumption B - General Conditions on (Σ1,Σ2, λ):

(a) We assume there exist constants w and W , such that

0 < w ≤ λmin(Σi) ≤ λmax(Σi) ≤W <∞

for i = 1, 2.

(b) In order that the signals do not vanish, we assume the canonical correlation
is bounded below by a positive constant Cλ, i.e. 0 < Cλ ≤ λ ≤ 1.

(c) Moreover, we require that estimators (Ω̂1, Ω̂2) are consistent in the sense
that

ξΩ = ‖Ω̂1Σ1 − I‖ ∨ ‖Ω̂2Σ2 − I‖ = o(1),

with probability at least 1−O(p−2).



Convergence Rates

Theorem 1(Convergence Rates)

Assume the Assumptions A and B hold. Let (α(k), β(k)) be the sequence from
Algorithm 1, with the initializer (α(0), β(0)) calculated by Algorithm 2. The
thresholding levels are

tij , γ1 = c1

√
log p

n
, γ2 = c2

√
log p

n

for sufficiently large constants (tij , c1, c2). Then with probability at least
1−O(p−2), we have

L(α(k), θ)2 ∨ L(β(k), η)2 ≤ C
(
s
( log p

n

)1−q/2
+ ‖(Ω̂1Σ1 − I)θ‖2 ∨ ‖(Ω̂2Σ2 − I)η‖2

)
for all k = 1, 2, ...,K with K = O(1) and some constant C > 0.



Data-Driven Thresholding

tij =
20
√

2

9

(√
‖Ω̂1‖ω̂2,jj +

√
‖Ω̂2‖ω̂1,ii +

√
ω̂1,iiω̂2,jj +

√
8‖Ω̂1‖‖Ω̂2‖/3

)

γ1 = (0.17 min
i,j

tij‖Ω̂2‖1/2 + 2.1‖Ω̂2‖1/2‖Ω̂1‖1/2 + 7.5‖Ω̂2‖)
√

log p

n

γ2 = (0.17 min
i,j

tij‖Ω̂1‖1/2 + 2.1‖Ω̂1‖1/2‖Ω̂2‖1/2 + 7.5‖Ω̂1‖)
√

log p

n

δ1 = δ2 = 0.08w1/2 min
i,j

tij (in the next page)



Outline of Proof for Convergence Rates

Construction of the Oracle Sequence :

H1 =

{
k : |αk| ≥ δ1

√
log p1

n

}
, H2 =

{
k : |βk| ≥ δ2

√
log p2

n

}
and L1 = Hc

1 , L2 = Hc
2 .

Then, we define the oracle version of Â : Âora =

(
ÂH1H2 0

0 0

)
.

We construct the oracle initializer (α(0),ora, β(0),ora) based on an oracle version
of Algorithm 2 with the sets B1 and B2 replaced by Bora

1 = B1 ∩H1 and
Bora

2 = B2 ∩H2.

Feeding the oracle initializer (α(0),ora, β(0),ora) and the matrix Âora into
Algorithm 1, we get the oracle sequence (α(k),ora, β(k),ora).



Outline of Proof for Convergence Rates

1 We are going to bound L(α̂ora, α) and L(β̂ora, β) where (α̂ora, β̂ora) is the first
pair of singular vectors of Âora.

2 Show that the oracle sequence (α(k),ora, β(k),ora) converges to (α̂ora, β̂ora) after
finite steps of iterations.

3 Show that the estimating sequence (α(k), β(k)) and the oracle sequence
(α(k),ora, β(k),ora) are identical with high probability.



Outline of Proof for Convergence Rates

Lemma 1

Under Assumptions A and B, we have

L(α̂ora, α)2 ∨ L(β̂ora, β)2 ≤ C
(
s
( log p

n

)1−q/2
+ ‖θ − α‖2 ∨ ‖η − β‖2

)
with probability at least 1−O(p−2) for some constant C > 0.

Let Aora =

(
AH1H2 0

0 0

)
and (αora, βora) be the first singular vectors of Aora.

L(α̂ora, α) ≤ L(α̂ora, αora) + L(αora, α)



Outline of Proof for Convergence Rates

Lemma 2

Under Assumptions A and B, we have

L(α(k),ora, α̂ora)2 ≤ C
(
s
( log p

n

)1−q/2
+ ‖θ − α‖2

)
for all k ≥ 1 with probability at least 1−O(p−2) for some constant C > 0.

Lemma 3

Under Assumptions A,B and the current choice of (γ1, γ2),
(α(k),ora, β(k),ora) = (α(k), β(k)) for all k = 1, ...,K, K = O(1), with probability at
least 1−O(p−2).



Convergence Rates

Gq0(s0, p) =
{

Ω = (ωij)p×p : maxj |ωj(k)|q0 ≤ s0k
−1for all k

}
for

0 ≤ q0 ≤ 1.

Corollary 1(Convergence Rates)

Assume the Assumptions A and B holds, Ωi ∈ Gq0(s0, pi), i = 1, 2, ‖Ωi‖l1 ≤ w−1

and s2
0 = O

(
(n/ log p)1−q0

)
. Ω̂i is obtained by applying CLIME procedure in Cai

et al. (2011). Then, with probability at least 1−O(p−2), we have

L(α(k), θ)2 ∨ L(β(k), η)2 ≤ C
(
s
( log p

n

)1−q/2
+ s2

0

( log p

n

)1−q0
)

for all k = 1, 2, ...,K with K = O(1) and some constant C > 0.



Minimax Lower Bound

Fp1,p2q (s1, s2, Cλ) =


N(0,Σ) : Σ is specified in (1) , λ ∈ (Cλ, 1)

Σi = Ipi×pi , i = 1, 2,
|θ|q(k) ∈ s1k

−1, |η|q(k) ≤ s2k
−1, for all k.

 .

Theorem 2:Minimax lower bound for known variance

For any q ∈ [0, 2], we assume that si
(

n
log pi

)q/2
= o(pi) for i = 1, 2 and

log p1 � log p2. Moreover, we also assume s
(

log p
n

)1−q/2
≤ c0 for some constant

c0 > 0. Then we have

inf
(θ̂,η̂)

sup
P∈F

EP
(
L2(θ̂, θ) ∨ L2(η̂, η)

)
≥ Cs

( log p

n

)1−q/2

where F = Fp1,p2q (s1, s2, Cλ) and C is a constant only depending on q and Cλ.



Minimax Lower Bound

Fp1,p2q,q0
(s0, s1, s2, Cλ, w,W ) =


N(0,Σ) : Σ is specified in (1) , λ ∈ (Cλ, 1)

Σ−1
i ∈ Gq0 (s0, pi),W

−1 ≤ λmin(Σ−1
i ), ‖Σ−1

i ‖l1 ≤ w
−1,

|θ|q
(k)
∈ s1k−1, |η|q

(k)
≤ s2k−1, for all k.

 .

Note that Fp1,p2q (s1, s2, Cλ) ⊂ Fp1,p2q,q0 (s0, s1, s2, Cλ, w,W ).

The lower bound is same as above.

Corollary 2: Minimax rate

Under the assumptions in Corollary 1 and Theorem 2 and assume n = o(ph) for
some h > 0. we have

inf
(θ̂,η̂)

sup
P∈F

EP
(
L2(θ̂, θ) ∨ L2(η̂, η)

)
� s
( log p

n

)1−q/2

for F = Fp1,p2q,q0 (s0, s1, s2, Cλ, w,W ), provided that

s2
0

(
log p
n

)1−q0
≤ Cs

(
log p
n

)1−q/2
for some constant C > 0.


