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Sparse CCA via Precision Adjusted Iterative Thresholding

@ Let (X,Y) € RP* x RP? denote random vectors with covariances (X1, 32)
and cross-covariance X12.

@ CCA finds pairs of linear projections of the two views, (a’ X, b’'Y’) that are
maximally correlated:

Proposition 1.

When %15 is of rank 1, the solution (up to sign jointly) of CCA problem is (6, n) if
and only if the covariance structure between X and Y can be written as

Tio = AT10nT s

where 0 < A < 1,073:0 = 1 and nTE277 = 1. In other words, the correlation
between a” X and b7 Y are maximized by corr(” X, 7 Y"), and X is the canonical
correlation between X and Y.




Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 2.

For general 312 with rank > 1, the solution (up to sign jointly) of CCA problem is
(61, m1) if and only if the covariance structure between X and Y can be written as

Y12 =21 (Z )\z'@miT) Y2

i=1

where A1 > Ao > ... > X\ > 0,07 2,0, =1(i = j) = nf San;.




CAPIT : Iterative Thresholding

Algorithm 1 : CAPIT

q
) |

Input : Sample covariance matrices X12;
Estimators of precision matrix Ql, Qg;

Initialization pair (), 8(9;

Thresholding level 71, 2.

Output : Canonical direction estimator (>, 3(>)
Set A = 9121202;

repeat

Right Multiplication: w>® = Ag(~1;

Left Thresholding : wl (6 =T(W"®,v);

("]
1,(i
@ Left Normalization : o) = wth( )/H o )||;
@ Left Multiplication : w™® = () A;

]

Right Thresholding : w;") = T(w"), 72);
Right Normalization : 3 = w ’(Z>/|\wT (Z)H

until Convergence of a® and g0,




CAPIT : Iterative Thresholding

@ CAPIT without thresholding = SVD-power method.
° 2T = 0)/°%,0)% 2

o Let £1/20; = 0/ and S5/ %n; = 1.

] Then, 212 = 21/2 ( Zzzl >\19;77;T) Eé/Q

and [0 = [|m;}2 = 1.
o It is same as the original CCA algorithm.



Initialization by Coordinate Thresholding

Algorithm 2 (CAPIT : Initialization by Coordinate Thresholding)

Input : Sample covariance matrices 212;
Estimators of precision matrix Ql, Qg;
Thresholding level tw

Output : Initializer a® and 8@

Set A Q1 21292 5

@ Coordinate selection : pick the index sets By and B> of the coordinates of 6
and 7 respectively as follows,
B, = {l - Inax; |&ij|/tij > Lgnpl },
By = {] : max; |&ij|/tij > 710%11)2 };
Reduced SVD : compute the leading pair of singular vectors (a(®? 1 (0),B2
p gPp g
on the submatrix Ap,,B, ;

@ Zero-padding procedure : construct the initializer (oz(o)7 B (0)) by zero-padding

({981 , B(O)'BZ) on index sets B and B3 respectively,
o) = a@B1 g <o> 0,89 = gO:52 5%) =0




The Single Canonical Pair Model

@ We propose a probabilistic model of (X, Y"), so that the canonical directions
(0, n) are explicitly modeled in the joint distribution of (X, Y").

The Single Canonical Pair Model

()~ (() Goars, ™8™)) @

with $1 > 0,22 > 0,072 =nT¥n =1and 0 < X < 1.




Convergence Rates

We consider the idea of data splitting.
Suppose we have 2n i.i.d. copies (X;, Y;)1<i<on.
Yo = % > XYL

The reason for data splitting is that we can write the matrix A in an alternative
form :

izl

S|
]
Il
=
H

where Xl- = QlXi and 17; = QQE foralli =1,...,n.

Conditioning on (X;, Y;)n11<i<an, the transformed data (X;, ;)1 <<, are
still i.i.d.



Convergence Rates

@ Conditioning on (X5, Yi)n+1<i<2x, the expectation of Ais Aap” where
o = 91219 andﬂ 922277

@ We consider the loss function L(a, b)? = 2|sin Z(a, b)|?
@ [t is easy to calculate that

aa” bbT
llall®  lIol1* ||

L(a,b) =




Convergence Rates

To achieve statistical consistency, we need some assumptions on the interesting part
(6, n) and nuisance part (X1, X2, \).

Assumption A - Sparsity Condition on (6, 7):

We assume € and 7 are in the weak [, ball, with 0 < g < 2. i.e.
10| ? < s1k™, ngy|? < s2k 7,

where 0y, is the k-th largest coordinate by magnitude. Let p = p1 V p2 and
s =81V S2.
The sparsity level s; and sz satisfy the following condition,




Convergence Rates

Assumption B - General Conditions on (X1, ¥2, A):

@ (a) We assume there exist constants w and W, such that
0 <w S )\mln(zz) S /\max(zi) S W < oo

fori =1,2.

@ (b) In order that the signals do not vanish, we assume the canonical correlation
is bounded below by a positive constant C,i.e. 0 < Cy < A < 1.

@ (c) Moreover, we require that estimators (Ql, Qg) are consistent in the sense
that

o = [|US1 — I|| V|52 — I = o(1),

with probability at least 1 — O(p~2).




Convergence Rates

Theorem 1(Convergence Rates)

Assume the Assumptions A and B hold. Let (a(k), B (k>) be the sequence from
Algorithm 1, with the initializer (o), 3(®)) calculated by Algorithm 2. The
thresholding levels are

logp logp
b, m=cg\—= M=c\/—-

for sufficiently large constants (¢;;, c1, c2). Then with probability at least
1—O(p~?), we have

1 1—q/2 2 2
L@, 0 v L(6®. ) < 0(s(FEL) T 4 (@0 — DI v (@32 - Tl )

forall k = 1,2, ..., K with K = O(1) and some constant C' > 0.




Data-Driven Thresholding

20v/2 - N — N
tij = T(\/HQlem + \/|\Q2||w1,n' + V@1,6w2,55 + 1/ 8|\91||||92\|/3)

. . . R A 1
= (017 min by [ ['/2 4 2.1 2] '/2 4 7.5]Q2 )y =2

. A A A R 1
72 = (017 min 15[ /2 4 2.0 22 ]'/2 4 7.5 )y =27

81 = 8y = 0.08w'/? mint;; (in the next page)
iJ



Outline of Proof for Convergence Rates

@ Construction of the Oracle Sequence :

= {k o] 2 61\/@}, Hy = {k Bl > &Fk’ipz}

andL1 = ch, L2 = HQC

@ Then, we define the oracle version of A : A% = (AH6 2 8) .

@ We construct the oracle initializer (o/(?)°®, 3(?)°) based on an oracle version
of Algorithm 2 with the sets By and B replaced by BY™ = B1 N H; and
B(Q)ra = B> N Ho.

@ Feeding the oracle initializer (o/(?)° 3(®):%) and the matrix A into
Algorithm 1, we get the oracle sequence (o(F)-02 gk).eray



Outline of Proof for Convergence Rates

@ We are going to bound L(&*™, o) and L(B°%, 8) where (6%, 3°%) is the first
pair of singular vectors of A,

@ Show that the oracle sequence (o) 37} converges to (4°%, 3°°) after
finite steps of iterations.

@ Show that the estimating sequence ('®), 3(*)) and the oracle sequence
(aF)er g0y are jdentical with high probability.



Outline of Proof for Convergence Rates

Under Assumptions A and B, we have

~ora Aora lo 1—q/2
L@, 0 v L, 97 < 0(s(PEL) T - jo ol vl - A7)

with probability at least 1 — O(p~?) for some constant C' > 0.

@ Let A = < ) and (a®®, B°*) be the first singular vectors of A*™.

o L( ora < ora 0 )+L( Ol'ﬂ )



Outline of Proof for Convergence Rates

Under Assumptions A and B, we have

4 ora 1 1—q/2
L(a(k)’om’d )2 < C(S( OSP) + ||0 _ a||2>

for all k£ > 1 with probability at least 1 — O(p~?2) for some constant C' > 0.

Under Assumptions A,B and the current choice of (71
(aB)ora glk)oray — (oK) B(R)) forall k =1, ..., K,
least 1 — O(p~2).

) V2 ) ’
K = O(1), with probability at




Convergence Rates

® Gy (s0,p) = {Q = (Wij)pxp : MAX; w0k |7 < sok~for all k} for
0<q <1

Corollary 1(Convergence Rates)

Assume the Assumptions A and B holds, Q; € G, (S0, i), = 1,2, [|Ql|;, < w?
and s5 = O((n/logp)' ). € is obtained by applying CLIME procedure in Cai
et al. (2011). Then, with probability at least 1 — O(p~2), we have

1—q/2 1—
L(a(k)70)2\/L(5(k)777)2SC(S(IOSP) q +sg(105p> qo)

forallk = 1,2, ..., K with K = O(1) and some constant C' > 0.




Minimax Lower Bound

N(0,%) : X is specified in (1) , A € (Ci, 1)
]-‘51472(81,82,0)\): Yi=Ip;xp;,t =1,2,
1013, € sk~ My < sok™1, forall k.

Theorem 2:Minimax lower bound for known variance

/2
For any ¢ € [0, 2], we assume that s; (ﬁ)q =o(p ) fori =1,2 and

log p1 < log p2. Moreover, we also assume s ( logp ) < ¢o for some constant
co > 0. Then we have

~ . logp 1—q/2
inf sup Ep(L*(0,0) Vv L?(#), >Cs
inf sup Er (L*(0,0) v L*(,)) = Os(Z2F)

where F = FF1'P2(s1, s2,Cx) and C'is a constant only depending on ¢ and C}.




Minimax Lower Bound

N(0,%) : X is specified in (1) , A € (Cy, 1)
FILUP2 (50, 51,52, Cr,w, W) = 3 S0 € Gag (50,2i), W < Anin (57 1), 1577 iy, < w0,
1015y € 51671, [nlly) < s2k~", forall k.

@ Note that 21?2 (s1, 52, Cx) C FELP2(s0, 51, 52, Cx, w, W).

@ The lower bound is same as above.

Corollary 2: Minimax rate

Under the assumptions in Corollary 1 and Theorem 2 and assume n = o(p™) for
some h > 0. we have

~ 1 1—qg/2
inf sup Ep (LZ(G, 9) v L*(7, n)) = s( ng)
(6,7) PEF n

for F = FP1P2(sg, s1, 82, Cx, w, W), provided that
2( 1o 1=40 lo =
2 (%) < Cs (%) for some constant C' > 0.




