Sparse CCA via Precision Adjusted Iterative Thresholding

Speaker : Semin Choi

Department of Statistics, Seoul National University, South Korea
January 10, 2017

Sparse CCA via Precision Adjusted Iterative Thresholding

- Let $(X, Y) \in \mathbb{R}^{p_{1}} \times \mathbb{R}^{p_{2}}$ denote random vectors with covariances $\left(\Sigma_{1}, \Sigma_{2}\right)$ and cross-covariance Σ_{12}.
- CCA finds pairs of linear projections of the two views, $\left(a^{\prime} X, b^{\prime} Y\right)$ that are maximally correlated:

Proposition 1.

When Σ_{12} is of rank 1, the solution (up to sign jointly) of CCA problem is (θ, η) if and only if the covariance structure between X and Y can be written as

$$
\Sigma_{12}=\lambda \Sigma_{1} \theta \eta^{T} \Sigma_{2}
$$

where $0<\lambda \leq 1, \theta^{T} \Sigma_{1} \theta=1$ and $\eta^{T} \Sigma_{2} \eta=1$. In other words, the correlation between $a^{T} X$ and $b^{T} Y$ are maximized by $\operatorname{corr}\left(\theta^{T} X, \eta^{T} Y\right)$, and λ is the canonical correlation between X and Y.

Sparse CCA via Precision Adjusted Iterative Thresholding

Proposition 2.

For general Σ_{12} with rank $r \geq 1$, the solution (up to sign jointly) of CCA problem is $\left(\theta_{1}, \eta_{1}\right)$ if and only if the covariance structure between X and Y can be written as

$$
\Sigma_{12}=\Sigma_{1}\left(\sum_{i=1}^{r} \lambda_{i} \theta_{i} \eta_{i}^{T}\right) \Sigma_{2}
$$

where $\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{r}>0, \theta_{i}^{T} \Sigma_{1} \theta_{j}=\mathbb{I}(i=j)=\eta_{i}^{T} \Sigma_{2} \eta_{j}$.

CAPIT : Iterative Thresholding

Algorithm 1 : CAPIT

Input : Sample covariance matrices $\hat{\Sigma}_{12}$;
Estimators of precision matrix $\hat{\Omega}_{1}, \hat{\Omega}_{2}$;
Initialization pair $\alpha^{(0)}, \beta^{(0)}$;
Thresholding level γ_{1}, γ_{2}.
Output : Canonical direction estimator $\alpha^{(\infty)}, \beta^{(\infty)}$.
Set $\hat{A}=\hat{\Omega}_{1} \hat{\Sigma}_{12} \hat{\Omega}_{2}$;
repeat

- Right Multiplication: $\omega^{l,(i)}=\hat{A} \beta^{(i-1)}$;
- Left Thresholding : $\omega_{t h}^{l,(i)}=T\left(\omega^{l,(i)}, \gamma_{1}\right)$;
- Left Normalization : $\alpha^{(i)}=\omega_{t h}^{l,(i)} /\left\|\omega_{t h}^{l,(i)}\right\|$;
- Left Multiplication : $\omega^{r,(i)}=\alpha^{(i)} \hat{A}$;
- Right Thresholding : $\omega_{t h}^{r,(i)}=T\left(\omega_{t h}^{r,(i)}, \gamma_{2}\right)$;
- Right Normalization : $\beta^{(i)}=\omega_{t h}^{r,(i)} /\left\|\omega_{t h}^{r,(i)}\right\|$;
until Convergence of $\alpha^{(i)}$ and $\beta^{(i)}$.

CAPIT : Iterative Thresholding

- CAPIT without thresholding $=$ SVD-power method.
- $\Omega_{1} \Sigma_{12} \Omega_{2} \Rightarrow \Omega_{1}^{1 / 2} \Sigma_{12} \Omega_{2}^{1 / 2}$?
- Let $\Sigma_{1}^{1 / 2} \theta_{i}=\theta_{i}^{\prime}$ and $\Sigma_{2}^{1 / 2} \eta_{i}=\eta_{i}^{\prime}$.
- Then, $\Sigma_{12}=\Sigma_{1}^{1 / 2}\left(\sum_{i=1}^{r} \lambda_{i} \theta_{i}^{\prime} \eta_{i}^{\prime T}\right) \Sigma_{2}^{1 / 2}$ and $\left\|\theta_{i}^{\prime}\right\|_{2}=\left\|\eta_{i}^{\prime}\right\|_{2}=1$.
- It is same as the original CCA algorithm.

Initialization by Coordinate Thresholding

Algorithm 2 (CAPIT : Initialization by Coordinate Thresholding)

Input : Sample covariance matrices $\hat{\Sigma}_{12}$;
Estimators of precision matrix $\hat{\Omega}_{1}, \hat{\Omega}_{2}$;
Thresholding level $t_{i j}$.
Output : Initializer $\alpha^{(0)}$ and $\beta^{(0)}$.
Set $\hat{A}=\hat{\Omega}_{1} \hat{\Sigma}_{12} \hat{\Omega}_{2}$;
(1) Coordinate selection : pick the index sets B_{1} and B_{2} of the coordinates of θ and η respectively as follows,
$B_{1}=\left\{i: \max _{j}\left|\hat{a}_{i j}\right| / t_{i j} \geq \sqrt{\frac{\log p_{1}}{n}}\right\}$,
$B_{2}=\left\{j: \max _{i}\left|\hat{a}_{i j}\right| / t_{i j} \geq \sqrt{\frac{\log p_{2}}{n}}\right\} ;$
(2) Reduced SVD : compute the leading pair of singular vectors $\left(\alpha^{(0), B_{1}}, \beta^{(0), B_{2}}\right)$ on the submatrix $\hat{A}_{B_{1}, B_{2}}$;
(3) Zero-padding procedure : construct the initializer $\left(\alpha^{(0)}, \beta^{(0)}\right)$ by zero-padding $\left(\alpha^{(0), B_{1}}, \beta^{(0), B_{2}}\right)$ on index sets B_{1}^{c} and B_{2}^{c} respectively, $\alpha_{B_{1}}^{(0)}=\alpha^{(0), B_{1}}, \alpha_{B_{1}^{c}}^{(0)}=0, \beta_{B_{2}}^{(0)}=\beta^{(0), B_{2}}, \beta_{B_{2}^{c}}^{(0)}=0$

The Single Canonical Pair Model

- We propose a probabilistic model of (X, Y), so that the canonical directions (θ, η) are explicitly modeled in the joint distribution of (X, Y).

The Single Canonical Pair Model

$$
\binom{X}{Y} \sim N\left(\binom{0}{0},\left(\begin{array}{cc}
\Sigma_{1} & \lambda \Sigma_{1} \theta \eta^{T} \Sigma_{2} \tag{1}\\
\lambda \Sigma_{2} \eta \theta^{T} \Sigma_{1} & \Sigma_{2}
\end{array}\right)\right)
$$

with $\Sigma_{1}>0, \Sigma_{2}>0, \theta^{T} \Sigma_{1} \theta=\eta^{T} \Sigma_{2} \eta=1$ and $0<\lambda \leq 1$.

Convergence Rates

- We consider the idea of data splitting.
- Suppose we have $2 n$ i.i.d. copies $\left(X_{i}, Y_{i}\right)_{1 \leq i \leq 2 n}$.
- $\hat{\Sigma}_{12}=\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}^{T}$.
- The reason for data splitting is that we can write the matrix \hat{A} in an alternative form :

$$
\hat{A}=\frac{1}{n} \sum_{i=1}^{n} \tilde{X}_{i} \tilde{Y}_{i}^{T}
$$

where $\tilde{X}_{i}=\hat{\Omega}_{1} X_{i}$ and $\tilde{Y}_{i}=\hat{\Omega}_{2} Y_{i}$ for all $i=1, \ldots, n$.

- Conditioning on $\left(X_{i}, Y_{i}\right)_{n+1 \leq i \leq 2 n}$, the transformed data $\left(\tilde{X}_{i}, \tilde{Y}_{i}\right)_{1 \leq i \leq n}$ are still i.i.d.

Convergence Rates

- Conditioning on $\left(X_{i}, Y_{i}\right)_{n+1 \leq i \leq 2 n}$, the expectation of \hat{A} is $\lambda \alpha \beta^{T}$ where $\alpha=\hat{\Omega}_{1} \Sigma_{1} \theta$ and $\beta=\hat{\Omega}_{2} \Sigma_{2} \eta$.
- We consider the loss function $L(a, b)^{2}=2|\sin \angle(a, b)|^{2}$
- It is easy to calculate that

$$
L(a, b)=\left\|\frac{a a^{T}}{\|a\|^{2}}-\frac{b b^{T}}{\|b\|^{2}}\right\|_{F}
$$

Convergence Rates

To achieve statistical consistency, we need some assumptions on the interesting part (θ, η) and nuisance part $\left(\Sigma_{1}, \Sigma_{2}, \lambda\right)$.

Assumption A - Sparsity Condition on (θ, η) :

We assume θ and η are in the weak l_{q} ball, with $0 \leq q \leq 2$. i.e.

$$
\left|\theta_{(k)}\right|^{q} \leq s_{1} k^{-1},\left|\eta_{(k)}\right|^{q} \leq s_{2} k^{-1}
$$

where $\theta_{(k)}$ is the k-th largest coordinate by magnitude. Let $p=p_{1} \vee p_{2}$ and $s=s_{1} \vee s_{2}$.
The sparsity level s_{1} and s_{2} satisfy the following condition,

$$
s=o\left(\left(\frac{n}{\log p}\right)^{\frac{1}{2}-\frac{q}{4}}\right)
$$

Convergence Rates

Assumption B - General Conditions on $\left(\Sigma_{1}, \Sigma_{2}, \lambda\right)$:

- (a) We assume there exist constants w and W, such that

$$
0<w \leq \lambda_{\min }\left(\Sigma_{i}\right) \leq \lambda_{\max }\left(\Sigma_{i}\right) \leq W<\infty
$$

for $i=1,2$.

- (b) In order that the signals do not vanish, we assume the canonical correlation is bounded below by a positive constant C_{λ}, i.e. $0<C_{\lambda} \leq \lambda \leq 1$.
- (c) Moreover, we require that estimators $\left(\hat{\Omega}_{1}, \hat{\Omega}_{2}\right)$ are consistent in the sense that

$$
\xi_{\Omega}=\left\|\hat{\Omega}_{1} \Sigma_{1}-I\right\| \vee\left\|\hat{\Omega}_{2} \Sigma_{2}-I\right\|=o(1)
$$

with probability at least $1-O\left(p^{-2}\right)$.

Convergence Rates

Theorem 1(Convergence Rates)

Assume the Assumptions A and B hold. Let $\left(\alpha^{(k)}, \beta^{(k)}\right)$ be the sequence from Algorithm 1, with the initializer $\left(\alpha^{(0)}, \beta^{(0)}\right)$ calculated by Algorithm 2. The thresholding levels are

$$
t_{i j}, \quad \gamma_{1}=c_{1} \sqrt{\frac{\log p}{n}}, \quad \gamma_{2}=c_{2} \sqrt{\frac{\log p}{n}}
$$

for sufficiently large constants $\left(t_{i j}, c_{1}, c_{2}\right)$. Then with probability at least $1-O\left(p^{-2}\right)$, we have
$L\left(\alpha^{(k)}, \theta\right)^{2} \vee L\left(\beta^{(k)}, \eta\right)^{2} \leq C\left(s\left(\frac{\log p}{n}\right)^{1-q / 2}+\left\|\left(\hat{\Omega}_{1} \Sigma_{1}-I\right) \theta\right\|^{2} \vee\left\|\left(\hat{\Omega}_{2} \Sigma_{2}-I\right) \eta\right\|^{2}\right)$
for all $k=1,2, \ldots, K$ with $K=O(1)$ and some constant $C>0$.

Data-Driven Thresholding

$$
\begin{gathered}
t_{i j}=\frac{20 \sqrt{2}}{9}\left(\sqrt{\left\|\hat{\Omega}_{1}\right\| \hat{\omega}_{2, j j}}+\sqrt{\left\|\hat{\Omega}_{2}\right\| \hat{\omega}_{1, i i}}+\sqrt{\hat{\omega}_{1, i i} \hat{\omega}_{2, j j}}+\sqrt{8\left\|\hat{\Omega}_{1}\right\|\left\|\hat{\Omega}_{2}\right\| / 3}\right) \\
\gamma_{1}=\left(0.17 \min _{i, j} t_{i j}\left\|\hat{\Omega}_{2}\right\|^{1 / 2}+2.1\left\|\hat{\Omega}_{2}\right\|^{1 / 2}\left\|\hat{\Omega}_{1}\right\|^{1 / 2}+7.5\left\|\hat{\Omega}_{2}\right\|\right) \sqrt{\frac{\log p}{n}} \\
\gamma_{2}=\left(0.17 \min _{i, j} t_{i j}\left\|\hat{\Omega}_{1}\right\|^{1 / 2}+2.1\left\|\hat{\Omega}_{1}\right\|^{1 / 2}\left\|\hat{\Omega}_{2}\right\|^{1 / 2}+7.5\left\|\hat{\Omega}_{1}\right\|\right) \sqrt{\frac{\log p}{n}} \\
\delta_{1}=\delta_{2}=0.08 w^{1 / 2} \min _{i, j} t_{i j} \quad \text { (in the next page) }
\end{gathered}
$$

Outline of Proof for Convergence Rates

- Construction of the Oracle Sequence :

$$
H_{1}=\left\{k:\left|\alpha_{k}\right| \geq \delta_{1} \sqrt{\frac{\log p_{1}}{n}}\right\}, \quad H_{2}=\left\{k:\left|\beta_{k}\right| \geq \delta_{2} \sqrt{\frac{\log p_{2}}{n}}\right\}
$$

and $L_{1}=H_{1}^{c}, L_{2}=H_{2}^{c}$.

- Then, we define the oracle version of $\hat{A}: \hat{A}^{\text {ora }}=\left(\begin{array}{cc}\hat{A}_{H_{1} H_{2}} & 0 \\ 0 & 0\end{array}\right)$.
- We construct the oracle initializer $\left(\alpha^{(0), \text { ora }}, \beta^{(0), \text { ora }}\right)$ based on an oracle version of Algorithm 2 with the sets B_{1} and B_{2} replaced by $B_{1}^{\text {ora }}=B_{1} \cap H_{1}$ and $B_{2}^{\text {ora }}=B_{2} \cap H_{2}$.
- Feeding the oracle initializer $\left(\alpha^{(0), \text { ora }}, \beta^{(0), \text { ora }}\right)$ and the matrix $\hat{A}^{\text {ora }}$ into Algorithm 1, we get the oracle sequence $\left(\alpha^{(k) \text {,ora }}, \beta^{(k) \text {,ora }}\right)$.

Outline of Proof for Convergence Rates

(1) We are going to bound $L\left(\hat{\alpha}^{\text {ora }}, \alpha\right)$ and $L\left(\hat{\beta}^{\text {ora }}, \beta\right)$ where $\left(\hat{\alpha}^{\text {ora }}, \hat{\beta}^{\text {ora }}\right)$ is the first pair of singular vectors of $\hat{A}^{\text {ora }}$.
(2) Show that the oracle sequence $\left(\alpha^{(k) \text {,ora }}, \beta^{(k), \text { ora })}\right.$ converges to $\left(\hat{\alpha}^{\text {ora }}, \hat{\beta}^{\text {ora }}\right)$ after finite steps of iterations.
(3) Show that the estimating sequence $\left(\alpha^{(k)}, \beta^{(k)}\right)$ and the oracle sequence $\left(\alpha^{(k), \text { ora }}, \beta^{(k) \text {,ora }}\right)$ are identical with high probability.

Outline of Proof for Convergence Rates

Lemma 1

Under Assumptions A and B, we have

$$
L\left(\hat{\alpha}^{\text {ora }}, \alpha\right)^{2} \vee L\left(\hat{\beta}^{\text {ora }}, \beta\right)^{2} \leq C\left(s\left(\frac{\log p}{n}\right)^{1-q / 2}+\|\theta-\alpha\|^{2} \vee\|\eta-\beta\|^{2}\right)
$$

with probability at least $1-O\left(p^{-2}\right)$ for some constant $C>0$.

- Let $A^{\text {ora }}=\left(\begin{array}{cc}A_{H_{1} H_{2}} & 0 \\ 0 & 0\end{array}\right)$ and $\left(\alpha^{\text {ora }}, \beta^{\text {ora }}\right)$ be the first singular vectors of $A^{\text {ora }}$.
- $L\left(\hat{\alpha}^{\text {ora }}, \alpha\right) \leq L\left(\hat{\alpha}^{\text {ora }}, \alpha^{\text {ora }}\right)+L\left(\alpha^{\text {ora }}, \alpha\right)$

Outline of Proof for Convergence Rates

Lemma 2

Under Assumptions A and B, we have

$$
L\left(\alpha^{(k), \text { ora }}, \hat{\alpha}^{\text {ora }}\right)^{2} \leq C\left(s\left(\frac{\log p}{n}\right)^{1-q / 2}+\|\theta-\alpha\|^{2}\right)
$$

for all $k \geq 1$ with probability at least $1-O\left(p^{-2}\right)$ for some constant $C>0$.

Lemma 3

Under Assumptions A,B and the current choice of $\left(\gamma_{1}, \gamma_{2}\right)$, $\left(\alpha^{(k) \text {,ora }}, \beta^{(k) \text {,ora }}\right)=\left(\alpha^{(k)}, \beta^{(k)}\right)$ for all $k=1, \ldots, K, K=O(1)$, with probability at least $1-O\left(p^{-2}\right)$.

Convergence Rates

- $\mathcal{G}_{q_{0}}\left(s_{0}, p\right)=\left\{\Omega=\left(\omega_{i j}\right)_{p \times p}: \max _{j}\left|\omega_{j(k)}\right|^{q_{0}} \leq s_{0} k^{-1}\right.$ for all $\left.k\right\}$ for $0 \leq q_{0} \leq 1$.

Corollary 1(Convergence Rates)

Assume the Assumptions A and B holds, $\Omega_{i} \in \mathcal{G}_{q_{0}}\left(s_{0}, p_{i}\right), i=1,2,\left\|\Omega_{i}\right\|_{l_{1}} \leq w^{-1}$ and $s_{0}^{2}=O\left((n / \log p)^{1-q_{0}}\right) . \hat{\Omega}_{i}$ is obtained by applying CLIME procedure in Cai et al. (2011). Then, with probability at least $1-O\left(p^{-2}\right)$, we have

$$
L\left(\alpha^{(k)}, \theta\right)^{2} \vee L\left(\beta^{(k)}, \eta\right)^{2} \leq C\left(s\left(\frac{\log p}{n}\right)^{1-q / 2}+s_{0}^{2}\left(\frac{\log p}{n}\right)^{1-q_{0}}\right)
$$

for all $k=1,2, \ldots, K$ with $K=O(1)$ and some constant $C>0$.

Minimax Lower Bound

$$
\mathcal{F}_{q}^{p_{1}, p_{2}}\left(s_{1}, s_{2}, C_{\lambda}\right)=\left\{\begin{array}{c}
N(0, \Sigma): \Sigma \text { is specified in }(1), \lambda \in\left(C_{\lambda}, 1\right) \\
\Sigma_{i}=I_{p_{i} \times p_{i}}, i=1,2, \\
|\theta|_{(k)}^{q} \in s_{1} k^{-1},|\eta|_{(k)}^{q} \leq s_{2} k^{-1}, \text { for all } k .
\end{array}\right\} .
$$

Theorem 2:Minimax lower bound for known variance

For any $q \in[0,2]$, we assume that $s_{i}\left(\frac{n}{\log p_{i}}\right)^{q / 2}=o\left(p_{i}\right)$ for $i=1,2$ and $\log p_{1} \asymp \log p_{2}$. Moreover, we also assume $s\left(\frac{\log p}{n}\right)^{1-q / 2} \leq c_{0}$ for some constant $c_{0}>0$. Then we have

$$
\inf _{(\hat{\theta}, \hat{\eta})} \sup _{P \in \mathcal{F}} \mathbb{E}_{P}\left(L^{2}(\hat{\theta}, \theta) \vee L^{2}(\hat{\eta}, \eta)\right) \geq C s\left(\frac{\log p}{n}\right)^{1-q / 2}
$$

where $\mathcal{F}=\mathcal{F}_{q}^{p_{1}, p_{2}}\left(s_{1}, s_{2}, C_{\lambda}\right)$ and C is a constant only depending on q and C_{λ}.

Minimax Lower Bound

$$
\mathcal{F}_{q, q_{0}}^{p_{1}, p_{2}}\left(s_{0}, s_{1}, s_{2}, C_{\lambda}, w, W\right)=\left\{\begin{array}{c}
N(0, \Sigma): \Sigma \text { is specified in }(1), \lambda \in\left(C_{\lambda}, 1\right) \\
\Sigma_{i}^{-1} \in \underset{\mathcal{G}_{q_{0}}\left(s_{0}, p_{i}\right), W^{-1} \leq \lambda_{\min }\left(\Sigma_{i}^{-1}\right),\left\|\Sigma_{i}^{-1}\right\|_{l_{1}} \leq w^{-1}}{|\theta|_{(k)}^{q} \in s_{1} k^{-1},|\eta|_{(k)}^{q} \leq s_{2} k^{-1}, \text { for all } k .}
\end{array}\right.
$$

- Note that $\mathcal{F}_{q}^{p_{1}, p_{2}}\left(s_{1}, s_{2}, C_{\lambda}\right) \subset \mathcal{F}_{q, q_{0}}^{p_{1}, p_{2}}\left(s_{0}, s_{1}, s_{2}, C_{\lambda}, w, W\right)$.
- The lower bound is same as above.

Corollary 2: Minimax rate

Under the assumptions in Corollary 1 and Theorem 2 and assume $n=o\left(p^{h}\right)$ for some $h>0$. we have

$$
\inf _{(\hat{\theta}, \hat{\eta})} \sup _{P \in \mathcal{F}} \mathbb{E}_{P}\left(L^{2}(\hat{\theta}, \theta) \vee L^{2}(\hat{\eta}, \eta)\right) \asymp s\left(\frac{\log p}{n}\right)^{1-q / 2}
$$

for $\mathcal{F}=\mathcal{F}_{q, q_{0}}^{p_{1}, p_{2}}\left(s_{0}, s_{1}, s_{2}, C_{\lambda}, w, W\right)$, provided that
$s_{0}^{2}\left(\frac{\log p}{n}\right)^{1-q_{0}} \leq C s\left(\frac{\log p}{n}\right)^{1-q / 2}$ for some constant $C>0$.

