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Factor analysis

e Factor analysis is a statistical method used to describe variability among observed,
correlated variables in terms of a potentially lower number of unobserved variables
called factors, which have some practical meanings.

e Suppose there are N independent M-dimensional observations yi,...,yy with
yi = (i, -5 ym) - eg.,

e y;j would be expression of gene j of sample i
e y;; would be user i's rating of item j

e y; are said to have a factor structure if they are represented as
yi=Afi+¢;

where f; are K-dimensional unobserved random vectors of common factors with
K < M, A isa M x K matrix of factor loadings and €; are noise vectors.
Conventionally we assume f; ~ Nk(0,I) and &; ~ Ny (0, 2) with Q being diagonal.



Factor analysis




Sparse factor analysis

o For several reasons, the loading matrix A is encouraged to be sparse, i.e., to have
lots of zeros.

e Sparsity gives improved predictive performance, because factors irrelevant to a
particular dimension are not included.

o Also, sparse models are more readily interpretable since a smaller number of factors
are associated with observed dimensions.

e genes link to some specific pathways
e movies can be grouped into a small number of genres



Sparse factor analysis
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Sparse Bayesian factor analysis

e In a Bayesian context, sparsity can be induced by using the spike and slab prior on
the factor loadings. For each factor loading \jx, we use

Ninlyin ~ (1= n)do + N0, 77)
~jn ~ Bernoulli(6)

where Jp denotes a point mass at zero.
e The matrix I = {’ij},’-\,ﬂk’g € RM*K includes binary allocation indicators that

characterize which factors are associated with each variable.



Choice of a number of factors

o Inference on the number of factors K in factor models is both conceptually and

computationally challenging.

e traditional factor models: fix K in advance and estimate A € RM*X

e A possible solution is using the Indian Buffet Process (IBP) which defines a

distribution over infinite binary matrices.

RMXOO

e infinitely many factor models: give the IBP prior on T' € and derive the

posterior of A € RM*x°°
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Indian buffet process

e The IBP is a distribution over infinite binary matrices.
e We can describe IBP in terms of the following restaurant analogy.

e A customer enters a restaurant with an infinitely large buffet.
e He helps himself to Poisson(«) dishes.
e The j-th customer enters the restaurant.

o She helps herself to each dish with probability my/j, where my is the number
of people whove tried dish k.

e She then tries Poisson(«/j) new dishes.
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Sparse Bayesian factor models with the IBP prior

e Consider the infinite factor model:
yi=Afi +¢;
where A € RP*°°,

e Use the IBP prior:

Nl mh ~ (1= )00 +1sN(0, 7 1)
Ynla  ~ IBP(a)
a ~ Gamma(aa, ba)
7~ Gamma(ar, b;)

e The posterior distribution can be computed by using a straightforward Gibbs
sampling algorithm.



Sparse Bayesian factor models with the IBP prior

The sparse Bayesian factor model with the IBP prior has many appealing properties, but
it lacks

e theoretical support

e an efficient algorithm



Applications to marketing

e By the factor analysis, we can discover the descriptive features for predicting the
item preferences. The loading vectors Aj = (Aj1, ..., Ajx) can represent item’s
feature (e.g., relative scores for movie j in K genres) and the factors f; users’
feature (e.g., user i's affinity for K genres).
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