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Factor analysis

• Factor analysis is a statistical method used to describe variability among observed,
correlated variables in terms of a potentially lower number of unobserved variables
called factors, which have some practical meanings.

• Suppose there are N independent M-dimensional observations y1, . . . , yN with
yi = (yi1, . . . , yiM)>. e.g.,

• yij would be expression of gene j of sample i
• yij would be user i ’s rating of item j

• yi are said to have a factor structure if they are represented as

yi = Λfi + εi

where fi are K -dimensional unobserved random vectors of common factors with
K < M, Λ is a M × K matrix of factor loadings and εi are noise vectors.
Conventionally we assume fi ∼ NK (0, I) and εi ∼ NM(0,Ω) with Ω being diagonal.



Factor analysis



Sparse factor analysis

• For several reasons, the loading matrix Λ is encouraged to be sparse, i.e., to have
lots of zeros.

• Sparsity gives improved predictive performance, because factors irrelevant to a
particular dimension are not included.

• Also, sparse models are more readily interpretable since a smaller number of factors
are associated with observed dimensions.

• genes link to some specific pathways
• movies can be grouped into a small number of genres



Sparse factor analysis



Sparse Bayesian factor analysis

• In a Bayesian context, sparsity can be induced by using the spike and slab prior on
the factor loadings. For each factor loading λjk , we use

λjh|γjh ∼ (1− γjh)δ0 + γjhN(0, τ−1)

γjh ∼ Bernoulli(θ)

where δ0 denotes a point mass at zero.

• The matrix Γ = {γjk}M,Kj,k=1 ∈ RM×K includes binary allocation indicators that
characterize which factors are associated with each variable.



Choice of a number of factors

• Inference on the number of factors K in factor models is both conceptually and
computationally challenging.

• traditional factor models: fix K in advance and estimate Λ ∈ RM×K

• A possible solution is using the Indian Buffet Process (IBP) which defines a
distribution over infinite binary matrices.

• infinitely many factor models: give the IBP prior on Γ ∈ RM×∞ and derive the
posterior of Λ ∈ RM×∞

(a) π(Γ) (b) π(Λ|Γ)



Indian buffet process

• The IBP is a distribution over infinite binary matrices.

• We can describe IBP in terms of the following restaurant analogy.

• A customer enters a restaurant with an infinitely large buffet.
• He helps himself to Poisson(α) dishes.
• The j-th customer enters the restaurant.
• She helps herself to each dish with probability mk/j , where mk is the number

of people whove tried dish k.
• She then tries Poisson(α/j) new dishes.



Sparse Bayesian factor models with the IBP prior

• Consider the infinite factor model:

yi = Λfi + εi

where Λ ∈ Rp×∞.

• Use the IBP prior:

λjh|γjh, τh ∼ (1− γjh)δ0 + γjhN(0, τ−1
h )

γjh|α ∼ IBP(α)

α ∼ Gamma(aα, bα)

τh ∼ Gamma(aτ , bτ )

• The posterior distribution can be computed by using a straightforward Gibbs
sampling algorithm.



Sparse Bayesian factor models with the IBP prior

The sparse Bayesian factor model with the IBP prior has many appealing properties, but
it lacks

• theoretical support

• an efficient algorithm



Applications to marketing

• By the factor analysis, we can discover the descriptive features for predicting the
item preferences. The loading vectors λj = (λj1, . . . ,λjK ) can represent item’s
feature (e.g., relative scores for movie j in K genres) and the factors fi users’
feature (e.g., user i ’s affinity for K genres).


