Sparse Bayesian factor analysis

llsang Ohn

Department of statistics, SNU

March 3, 2017

(ロ)、(型)、(E)、(E)、 E) の(の)

Factor analysis

- Factor analysis is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors, which have some practical meanings.
- Suppose there are N independent M-dimensional observations $\mathbf{y}_1, \dots, \mathbf{y}_N$ with $\mathbf{y}_i = (y_{i1}, \dots, y_{iM})^\top$. e.g.,
 - y_{ij} would be expression of gene j of sample i
 - y_{ij} would be user *i*'s rating of item *j*
- y_i are said to have a factor structure if they are represented as

$$\mathbf{y}_i = \mathbf{\Lambda} \mathbf{f}_i + \boldsymbol{\varepsilon}_i$$

where \mathbf{f}_i are K-dimensional unobserved random vectors of common factors with K < M, Λ is a $M \times K$ matrix of factor loadings and ε_i are noise vectors. Conventionally we assume $\mathbf{f}_i \sim N_K(\mathbf{0}, \mathbf{I})$ and $\varepsilon_i \sim N_M(\mathbf{0}, \Omega)$ with Ω being diagonal.

Factor analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sparse factor analysis

- For several reasons, the loading matrix ${\bf \Lambda}$ is encouraged to be sparse, i.e., to have lots of zeros.
- Sparsity gives improved predictive performance, because factors irrelevant to a particular dimension are not included.
- Also, sparse models are more readily interpretable since a smaller number of factors are associated with observed dimensions.

- genes link to some specific pathways
- movies can be grouped into a small number of genres

Sparse factor analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

• In a Bayesian context, sparsity can be induced by using the spike and slab prior on the factor loadings. For each factor loading λ_{jk} , we use

$$\lambda_{jh}|\gamma_{jh} \sim (1 - \gamma_{jh})\delta_0 + \gamma_{jh}N(0, \tau^{-1})$$

 $\gamma_{jh} \sim \text{Bernoulli}(\theta)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where δ_0 denotes a point mass at zero.

• The matrix $\Gamma = \{\gamma_{jk}\}_{j,k=1}^{M,\kappa} \in \mathbb{R}^{M \times \kappa}$ includes binary allocation indicators that characterize which factors are associated with each variable.

Choice of a number of factors

- Inference on the number of factors K in factor models is both conceptually and computationally challenging.
 - traditional factor models: fix K in advance and estimate $\mathbf{\Lambda} \in \mathbb{R}^{M imes K}$
- A possible solution is using the Indian Buffet Process (IBP) which defines a distribution over infinite binary matrices.
 - infinitely many factor models: give the IBP prior on $\Gamma \in \mathbb{R}^{M \times \infty}$ and derive the posterior of $\Lambda \in \mathbb{R}^{M \times \infty}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Indian buffet process

- The IBP is a distribution over infinite binary matrices.
- We can describe IBP in terms of the following restaurant analogy.
 - A customer enters a restaurant with an infinitely large buffet.
 - He helps himself to $Poisson(\alpha)$ dishes.
 - The *j*-th customer enters the restaurant.
 - She helps herself to each dish with probability m_k/j, where m_k is the number of people whove tried dish k.
 - She then tries $Poisson(\alpha/j)$ new dishes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Sparse Bayesian factor models with the IBP prior

• Consider the infinite factor model:

$$\mathbf{y}_i = \mathbf{\Lambda} \mathbf{f}_i + \boldsymbol{\varepsilon}_i$$

where $\Lambda \in \mathbb{R}^{p imes \infty}$.

• Use the IBP prior:

$$\begin{array}{lll} \lambda_{jh}|\gamma_{jh},\tau_h &\sim & (1-\gamma_{jh})\delta_0+\gamma_{jh}\mathrm{N}(0,\tau_h^{-1})\\ \gamma_{jh}|\alpha &\sim & \mathrm{IBP}(\alpha)\\ \alpha &\sim & \mathrm{Gamma}(\boldsymbol{a}_\alpha,\boldsymbol{b}_\alpha)\\ \tau_h &\sim & \mathrm{Gamma}(\boldsymbol{a}_\tau,\boldsymbol{b}_\tau) \end{array}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

• The posterior distribution can be computed by using a straightforward Gibbs sampling algorithm.

The sparse Bayesian factor model with the IBP prior has many appealing properties, but it lacks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- theoretical support
- an efficient algorithm

Applications to marketing

 By the factor analysis, we can discover the descriptive features for predicting the item preferences. The loading vectors λ_j = (λ_{j1},..., λ_{jK}) can represent item's feature (e.g., relative scores for movie j in K genres) and the factors f_i users' feature (e.g., user i's affinity for K genres).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで