Recommender System and Data Analysis

Boyoung Kim

Seoul National University

March 3, 2017

1 / 18

Outline

- Collaborative Filtering Using Auto-encoder
 - Introduction
 - AutoRec (Suvash Sedhain, et al., 2015)
 - Itarative method using Auto-encoder
 - Experimental results
- 2 Recommendation Based On Click Through Rates
 - Introduction
 - Likelihood based approach
 - Experimental results

Outline

- 1 Collaborative Filtering Using Auto-encoder
 - Introduction
 - AutoRec (Suvash Sedhain, et al., 2015)
 - Itarative method using Auto-encoder
 - Experimental results
- 2 Recommendation Based On Click Through Rates
 - Introduction
 - Likelihood based approach
 - Experimental results

Introduction

 Some Deep Learning models can be used to model tabular data, such as user's ratings of movies.

Jester 5k dataset

- 5000 users and 100 jokes.
- Rating between -10.00 and 10.00
- Users give the score for a few jokes.

```
12
                             †4
                                   †5
                                                      18
                                                            †9
                                                                 j10
u883
                     0.29
                           1.89 -1.12
                                       0.39 -2.52 -3.01 -0.78 -4.03
u14061
                             NA -0.19 -0.15 -6.75
                                                   2.14
                                                            NA -3.20
        0.49 -6.12 -7.04 -6.50 8.06 -6.65 5.78
116974
                                                   3.45 -2.86
                                                                7.96 -3.35 -4.81
                                      5.97 -8.69 -5.97
u5081
          NA
                NA
                       NA
                                                            NA
                                                                  NA
                                                                         NA - 0.10
u3328
          NA -2.28
                             NA -7.62 -7.04 -2.38 -7.52
                                                            NA -0.58 -3.01 -3.98
                       NA
u8103
                                         NA 4.56 -0.49
                                                            NA
                                                                         NA
          NA
                NΔ
                       NA
                             NA -3.59
                                                                   NA
                                                                               NA
```

Deep Neural Network (Deep learning)

Figure 1: Classification example of deep neural network

Auto-encoder

- Unsupervised learning version of Neural Network.
- AE can be used for dimensionality reduction of high-dimensional data.
- AE generate a hidden representation from an input, and reconstruct the output as the input from the hidden representation.
- Setting the target values to be equal to the input : $\hat{x} \approx x$.

Auto-encoder

Recommender system and Data analysis

Auto-encoder

- Suppose that *n* inputs and *F* hidden units.
- Then the hidden and output units are :

$$h_j = g(\sum_{i=1}^n V_{ij}x_i + a_j)$$
 for $j = 1, \dots, F$ and

$$\hat{x_i} = f(\sum_{i=1}^{F} W_{ij}h_j + b_i)$$
 for $i = 1, \dots, n$

where $\mathbf{a} \in \mathbb{R}^F$ and $\mathbf{b} \in \mathbb{R}^n$ are bias vectors,

 $\mathbf{V} \in \mathbb{R}^{n \times F}$ and $\mathbf{W} \in \mathbb{R}^{n \times F}$ are weight matrices and

 $f(\cdot)$ and $g(\cdot)$ are activation functions (eg, $f(x) = 1/(1 + e^{-x})$).

→ロト → 部 → → 車 ト 車 り Q C P

AutoRec: Autoencoders Meet Collaborative Filtering (Suvash Sedhain, et al., 2015)

- We use different Autoencoder for each user.
- Item-based AutoRec use Autoencoder for each item.

Figure 3: User-based AutoRec model

9 / 18

Itarative method using Auto-encoder

- Fill in 0 or mean of ratings that users have not rated. Consider it as input.
- Get the output from the Auto-encoder model.
- Iterate until convergence
 - Fix the ratings which the users have rated and fill in the predicted values(in the previous step) that users have not rated. Consider it as input.
 - Get the output from the Auto-encoder model.

Experimental results

- Training data: 80%, Test data: 20%
- Test RMSE = $\sqrt{\sum_{u,i \in \mathsf{Test}} \mathsf{set} (r_{ui} \hat{r_{ui}})^2 / |\mathsf{Test}|}$ set|.

Table 1: Comparision of the test RMSE

Methods	test RMSE
Matrix Factorization	4.1645
Personalized	4.1283
U-Autorec	4.3570
I-Autorec	4.1445
Iterative method	4.2488

Outline

- 1 Collaborative Filtering Using Auto-encoder
 - Introduction
 - AutoRec (Suvash Sedhain, et al., 2015)
 - Itarative method using Auto-encoder
 - Experimental results
- Recommendation Based On Click Through Rates
 - Introduction
 - Likelihood based approach
 - Experimental results

Click Trough Rates data Analysis

- The effective of a particular online ad on a particular website.
- Observe the number of clicks and exposures of the ads to users.
- Predict

$$\textit{Click through rate}(\%) = \frac{\# \ \textit{of clicks}}{\# \ \textit{of exposures}}$$

Recommend the best ad for a specific user.

Likelihood based approach

- n users, p ads.
- X_{ua}: the number of clicks of the ad a to user u.
- N_{ua} : the number of exposures of the ad a to user u.

Likelihood based approach

- Assume $X_{ua} \sim Bin(N_{ua}, p_{ua})$.
- log likelihood

$$I(\mathbf{p}) = \sum_{u=1}^{n} \sum_{p=1}^{a} \{ X_{ua} log p_{ua} + (N_{ua} - X_{ua}) log (1 - p_{ua}) \}$$

Estimate $p_{\mu a}$ that maximize the log likelihood.

Likelihood based approach

Propose three models for p_{ua} .

- 1) Ad-wise probability model
 - Assume that $p_{ua} = p_a$ for all u.
 - ML estimator : $\hat{p_{ua}} = \frac{\sum_{u} X_{ua}}{\sum_{u} N_{ua}}$.
- 2) Additive model
 - Assume that *logit* $p_{ua} = \alpha + \beta_u + \gamma_a$.
- 3) Matrix factorization
 - For a pre-selected positive integer K, assume

logit
$$p_{ua} = \alpha + \beta_u + \gamma_a + \sum_{k=1}^{K} r_{uk} \cdot q_{ka}$$
.

March 3, 2017

Experimental results

Table 2: Predicted probability that user40 clicks the ad205 of models

Model	$\hat{p}_{u=40,a=205}$
Ad-wise	0.00785
Additive	0.00567
Matrix factorization	0.00566

Table 3: Comparision of test log-likelihood of models

Model	Test log-likelihood
Ad-wise	-49489.6
Additive	-47066.9
Matrix factorization	-47033.1