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Collaborative Filtering Using Auto-encoder

Introduction

Introduction

= Some Deep Learning models can be used to model tabular data, such as

user'’s ratings of movies.

Jester 5k dataset

= 5000 users and 100 jokes.

= Rating between -10.00 and 10.00

= Users give the score for a few jokes.
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Collaborative Filtering Using Auto-encoder Introduction

Deep Neural Network (Deep learning)
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Figure 1: Classification example of deep neural network
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Collaborative Filtering Using Auto-encoder Introduction

Auto-encoder

= Unsupervised learning version of Neural Network.
= AE can be used for dimensionality reduction of high-dimensional data.

= AE generate a hidden representation from an input, and reconstruct the
output as the input from the hidden representation.

= Setting the target values to be equal to the input : X~ x.
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Collaborative Filtering Using Auto-encoder Introduction

Auto-encoder
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Figure 2: Architecture of autoencoder

Recommender system and Data analysis March 3, 2017

7/18



Collaborative Filtering Using Auto-encoder Introduction

Auto-encoder

= Suppose that n inputs and F hidden units.

= Then the hidden and output units are :

hj:g(Z\/,jX;+aj) forj=1,---,F and
i=1

F
% =Y Wihj+b) fori=1,---n
=
where a € RF and b € R” are bias vectors,

V € R™F and W € R"*F are weight matrices and
f(-) and g(-) are activation functions (eg, f{x) = 1/(1 + e™)).
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Collaborative Filtering Using Auto-encoder

AutoRec (Suvash Sedhain, et al., 2015)
AutoRec : Autoencoders Meet Collaborative Filtering
(Suvash Sedhain, et al., 2015)

= We use different Autoencoder for each user.

Item-based AutoRec use Autoencoder for each item

Rpni)
=1
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Figure 3: User-based AutoRec model
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Collaborative Filtering Using Auto-encoder Itarative method using Auto-encoder

ltarative method using Auto-encoder

= Fill in 0 or mean of ratings that users have not rated. Consider it as input.

= Get the output from the Auto-encoder model.

= [terate until convergence

= Fix the ratings which the users have rated and fill in the predicted
values(in the previous step) that users have not rated. Consider it as
input.

= Get the output from the Auto-encoder model.
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Collaborative Filtering Using Auto-encoder Experimental results

Experimental results

= Training data : 80%, Test data : 20%

= Test RMSE = \/zu,,em ot (rui — Fui) /| Test set|.

Table 1: Comparision of the test RMSE

Methods test RMSE
Matrix Factorization 4.1645
Personalized 4.1283
U-Autorec 4.3570
|-Autorec 4.1445
Iterative method 4.2488
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Recommendation Based On Click Through Rates Introduction

Click Trough Rates data Analysis

= The effective of a particular online ad on a particular website.
= Observe the number of clicks and exposures of the ads to users.

= Predict .
# of clicks

Click through rate(%) = m

= Recommend the best ad for a specific user.
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Recommendation Based On Click Through Rates Likelihood based approach

Likelihood based approach

= n users, p ads.
= X, : the number of clicks of the ad a to user u.

= N,; : the number of exposures of the ad a to user u.

Likelihood based approach
» Assume X,z ~ Bin(Nya, pua)-
= |og likelihood

Z Z{Xua/()gpua (Nua - Xua)/()g(]- - pua)}

u=1 p=1

= Estimate p,, that maximize the log likelihood.
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Recommendation Based On Click Through Rates Likelihood based approach

Likelihood based approach

Propose three models for p,.

1) Ad-wise probability model
= Assume that p,, = p; for all u.

= ML estimator : py, = %

2) Additive model
= Assume that logit py, = o + By + V..

3) Matrix factorization

= For a pre-selected positive integer K, assume
K

logit pya = a+ By + va+ Z Fuk * Gka-
k=1
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Recommendation Based On Click Through Rates

Experimental results

Table 2: Predicted probability that user40 clicks the ad205 of models

Experimental results

Model Pu=40,a=205
Ad-wise 0.00785
Additive 0.00567

Matrix factorization 0.00566

Table 3: Comparision of test log-likelihood of models
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Model Test log-likelihood
Ad-wise -49489.6
Additive -47066.9

Matrix factorization -47033.1
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