Learning without forgetting

Zhizhong Li and Derek Hoiem

European Conference on Computer Vision (ECCV), 2016

Presented by Boyoung Kim May 4, 2017

Contents

- 1. Introduction
- 2. Three Common Approaches
- 3. Learning Without Forgetting
- 4. Experimental Result

1. Introduction

We want to build a unified vision system or gradually add new capabilities to a system.
 (e.g., For construction safety, a system can identify whether a worker is wearing a safety vest or hard hat, but a superintendent may wish to add the ability to detect improper footwear.)

• The usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes infeasible.

⇒ How can we use only new task data to train the network while preserving the original capabilities on image classification problems with Convolutional Neural Network(CNN)?

2. Three Common Approaches

Transfer learning: Storing Knowledge gained solving one problem and applying it to a different but related problems

Setting

- θ_s : a set of shared parameters
- θ_o : task-specific parameters for previously learned tasks
- θ_n : randomly initialized task-specific parameters for new tasks

2. Three Common Approaches

(a) Original Model

(c) Feature Extraction

(d) Joint Training

2. Three Common Approaches

Each of these strategies has a major drawback.

- Feature extraction typically underperforms on the new task.
- Fine-tuning degrades performance on previously learned tasks
- Joint training becomes increasingly cumbersome in training as more tasks are learned and the training data for previously learned tasks is needed.

 \Rightarrow Our goal is to add task-specific parameters θ_n for a new task and to learn parameters that work well on old and new tasks, using images and labels from only the new task.

3. Learning Without Forgetting

Procedure for learning without forgetting

```
LEARNINGWITHOUTFORGETTING:
  Start with:
          \theta_s: shared parameters
          \theta_o: task specific parameters for each old task
          X_n, Y_n: training data and ground truth on the new task
  Initialize:
          Y_o \leftarrow \text{Cnn}(X_n, \theta_s, \theta_o) // compute output of old tasks for new data
          \theta_n \leftarrow \text{RANDINIT}(|\theta_n|) // randomly initialize new parameters
  Train:
         Define \hat{Y}_o \equiv \text{CNN}(X_n, \hat{\theta}_s, \hat{\theta}_o) // old task output
         Define \hat{Y}_n \equiv \text{Cnn}(X_n, \hat{\theta}_s, \hat{\theta}_n) // new task output
         \theta_s^*, \ \theta_o^*, \ \theta_n^* \leftarrow \underset{\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n}{\operatorname{argmin}} \left( \mathcal{L}_{old}(Y_o, \hat{Y}_o) + \mathcal{L}_{new}(Y_n, \hat{Y}_n) + \mathcal{R}(\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n) \right)
```

 $\sqrt{}$ When training, we first freeze θ_s and θ_o and train θ_n to convergence. Then, we jointly train all weights until convergence.

3. Learning Without Forgetting

• For new task, we use common multinomial logistic loss :

$$L_{new}(y_n, \widehat{y_n}) = -y_n \log \widehat{y_n}$$

where $\widehat{y_n}$ is the softmax output of the network and y_n is the one-hot ground truth label vector.

• For each original task, a modified cross-entropy loss (Distillation loss, Hinton et al.[1]) that increases the weight for smaller probabilities for T>1:

$$L_{old}(y_n, \widehat{y_n}) = -\sum_{i=1}^{l} y_o'^{(i)} \log \widehat{y}_o'^{(i)}$$

where l is the number of labels and $y_o^{\prime(i)}$, $\hat{y}_o^{\prime(i)}$ are the modified versions of recorded and current probabilities $y_o^{(i)}$, $\hat{y}_o^{(i)}$:

$$y_o^{\prime(i)} = \frac{(y_o^{(i)})^{1/T}}{\sum_i (y_o^{(j)})^{1/T}}, \quad \hat{y}_o^{\prime(i)} = \frac{(\hat{y}_o^{(i)})^{1/T}}{\sum_i (\hat{y}_o^{(j)})^{1/T}}$$

• The regularization R corresponds to a simple weight decay of 0.0005.

3. Learning Without Forgetting

(e) Learning without Forgetting

4. Experimental Results

Performance for the single New Task Scenario.

(a) Using AlexNet structure (validation performance for ImageNet/Places2/VOC)

	${\rm ImageNet} {\rightarrow} {\rm VOC}$		${\rm ImageNet} {\rightarrow} {\rm CUB}$		$ImageNet {\rightarrow} Scenes$		$Places2{\rightarrow}VOC$		$Places2{\rightarrow}CUB$		$Places2 {\rightarrow} Scenes$		${\bf ImageNet} {\rightarrow} {\bf MNIST}$	
	old	new	old	new	old	new	old	new	old	new	old	new	old	new
LwF (ours)	56.5	75.8	55.1	57.5	55.9	64.5	43.3	72.1	38.4	41.7	43.0	75.3	52.1	99.0
fine-tuning feat. extraction		-0.3 -1.1	-5.1 2.0	-1.5 -5.3	-3.4 1.2	-1.0 -3.7	-1.8 -0.2	-0.1 -3.9	-9.1 4.7	-0.8 -19.4	-4.1 0.2	-0.8 -0.5	-4.9 5.0	0.2 -0.8
joint training	0.2	0.0	0.5	-0.9	0.5	-0.6	-0.1	0.1	3.3	-0.2	0.2	0.1	4.7	0.2

(b) Test set performance (c) Using VGGnet structure

	$Places2{\rightarrow}VOC$			
	old	new		
LwF (ours)	41.1	75.2		
fine-tuning feat. extraction		-0.1 -3.5		
joint training	0.0	0.0		

	Image	Net→CUB	$ImageNet {\rightarrow} Scenes$			
	old	new	old	new		
LwF (ours)	65.6	72.3	68.1	74.7		
fine-tuning feat. extraction	-11.0 3.1	-0.2 -9.1	-5.6 0.7	-0.7 -5.1		
joint training	2.5	2.3	2.0	0.8		

4. Experimental Results

Performance for the multiple New Task Scenario.

fine-tuning

joint training

feat. extractionLwF (ours)

4. Experimental Results

Influence of Dataset Size

(a) VOC mAP (new) (b) Places2 accuracy (old)

