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1. Introduction

 We want to build a unified vision system or gradually add new capabilities to a system.
(e.g., For construction safety, a system can identify whether a worker is wearing a safety vest

or hard hat, but a superintendent may wish to add the ability to detect improper footwear.)

« The usual assumption is that training data for all tasks is always available. However, as the

number of tasks grows, storing and retraining on such data becomes infeasible.

= How can we use only new task data to train the network while preserving the original

capabilities on image classification problems with Convolutional Neural Network(CNN)?



2. Three Common Approaches

Transfer learning : Storing Knowledge gained solving one problem and applying it to a different

but related problems

Setting
e 0, :a set of shared parameters
* 0, : task-specific parameters for previously learned tasks

* 0, :randomly initialized task-specific parameters for new tasks
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2. Three Common Approaches

Each of these strategies has a major drawback.

« Feature extraction typically underperforms on the new task.
* Fine-tuning degrades performance on previously learned tasks

« Joint training becomes increasingly cumbersome in training as more tasks are learned and

the training data for previously learned tasks is needed.

= Qur goal is to add task-specific parameters 6,, for a new task and to learn parameters that

work well on old and new tasks, using images and labels from only the new task.



3. Learning Without Forgetting

Procedure for learning without forgetting

LEARNINGWITHOUTFORGETTING:
Start with:

0s: shared parameters

0,: task specific parameters for each old task

X, Yy training data and ground truth on the new task
Initialize:

Y, « CNN(Xy, s, 65)

// compute output of old tasks for new data
6,, <~ RANDINIT(|0,|)

// randomly initialize new parameters
Train:
Define Y, = CNN(Xy, s, 0,) // old task output
Define Y,, = CNN(X,, 0, én)

// new task output
0, 0,, 0, < argmin

! (ﬁold(Y03 }Afo) + ﬁncw(}/n; }A/;L) + R(és, éo, én))
gsaéo:én

Vv When training, we first freeze 65 and 6, and train 6,, to convergence. Then, we jointly train all weights until
convergence.



3. Learning Without Forgetting

« For new task, we use common multinomial logistic loss :

Lyew (Yn 'yT\l) = ~Yn log;’/;

where ¥, is the softmax output of the network and y, is the one-hot ground truth label vector.

« For each original task, a modified cross-entropy loss (Distillation loss, Hinton et al.[1]) that increases the

weight for smaller probabilities for T>1:

LoiaWn Vm) = Z Yo ’(l)

where [ is the number of labels and yo(‘), V. 'Dare the modified versions of recorded and

current probabilities y, 9

l))l/T (l))l/T

A’(l) (y
AR

@) Do
'O =
AR

e The regularization R corresponds to a simple weight decay of 0.0005.

[1] Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. NIPS 2014



3. Learning Without Forgetting

(e) Learning without Forgetting
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4. Experimental Results

Performance for the single New Task Scenario.

(a) Using AlexNet structure (validation performance for ImageNet/Places2/VOC)

ImageNet—VOC ImageNet—CUB ImageNet—Scenes Places2—VOC Places2—CUB Places2—Scenes ImageNet—MNIST

old new old new old new old new old new old new old new
LwF (ours) 56.5 75.8 55.1 57.5 55.9 64.5 43.3 T2.1 38.4 41.7 43.0 75.3 52.1 09.0
fine-tuning -1.4 -0.3 -5.1 -1.5 -3.4 -1.0 -1.8 -0.1 -91 -0.58 -4.1 -0.8 -4.9 0.2
feat. extraction 0.5 -1.1 2.0 -5 1.2 -a.7 -0.2 -3.9 4.7 -19.4 0.2 -0.5 5.0 -0.8
joint training 0.2 0.0 0.5 -0.9 0.5 -0.6 -0.1 0.1 3.3 -0.2 0.2 0.1 4.7 (.2
(b) Test set performance  (c¢) Using VGGnet structure
Places2—VOC ImageNet—CUB ImageNet— Scenes
old new old new old new
LwF (ours) 41.1 75.2 LwF (ours) 65.6 72.3 68.1 T4.T
fine-tuning -1.9 -0.1 fine-tuning -11.0 -0.2 -5.6 -0.7
feat. extraction 0.1 -3.5 feat. extraction 3.1 -9.1 0.7 -5.1

joint training 0.0 0.0 joint training 2.5 2.3 2.0 0.8
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Performance for the multiple New Task Scenario.
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4. Experimental Results

Influence of Dataset Size
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