




• We want to build a unified vision system or gradually add new capabilities to a system.

(e.g., For construction safety, a system can identify whether a worker is wearing a safety vest 

or hard hat, but a superintendent may wish to add the ability to detect improper footwear.)

• The usual assumption is that training data for all tasks is always available. However, as the 

number of tasks grows, storing and retraining on such data becomes infeasible.

⇒ How can we use only new task data to train the network while preserving the original  

capabilities on image classification problems with Convolutional Neural Network(CNN)?



Transfer learning : Storing Knowledge gained solving one problem and applying it to a different 

but related problems

Setting

• 𝜃𝜃𝑠𝑠 : a set of shared parameters

• 𝜃𝜃𝑜𝑜 : task-specific parameters for previously learned tasks

• 𝜃𝜃𝑛𝑛 : randomly initialized task-specific parameters for new tasks





Each of these strategies has a major drawback. 

• Feature extraction typically underperforms on the new task.

• Fine-tuning degrades performance on previously learned tasks

• Joint training becomes increasingly cumbersome in training as more tasks are learned and 

the training data for previously learned tasks is needed.

⇒ Our goal is to add task-specific parameters 𝜃𝜃𝑛𝑛 for a new task and to learn parameters that 

work well on old and new tasks, using images and labels from only the new task.



Procedure for learning without forgetting

√ When training, we first freeze 𝜃𝜃𝑠𝑠 and 𝜃𝜃𝑜𝑜 and train 𝜃𝜃𝑛𝑛 to convergence. Then, we jointly train all weights until 

convergence.



• For new task, we use common multinomial logistic loss :

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 𝑦𝑦𝑛𝑛 ,�𝑦𝑦𝑛𝑛 = −𝑦𝑦𝑛𝑛 log�𝑦𝑦𝑛𝑛

where �𝑦𝑦𝑛𝑛 is the softmax output of the network and 𝑦𝑦𝑛𝑛 is the one-hot ground truth label vector.

• For each original task, a modified cross-entropy loss (Distillation loss, Hinton et al.[1]) that increases the 

weight for smaller probabilities for T>1: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦𝑛𝑛 ,�𝑦𝑦𝑛𝑛 = −�
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where 𝑙𝑙 is the number of labels and 𝑦𝑦𝑜𝑜
′(𝑖𝑖), �𝑦𝑦𝑜𝑜

′(𝑖𝑖)are the modified versions of recorded and
current probabilities 𝑦𝑦𝑜𝑜

(𝑖𝑖), �𝑦𝑦𝑜𝑜
(𝑖𝑖) :

𝑦𝑦𝑜𝑜
′(𝑖𝑖) =

(𝑦𝑦𝑜𝑜
𝑖𝑖 ) ⁄1 𝑇𝑇

∑𝑗𝑗(𝑦𝑦𝑜𝑜
𝑗𝑗 ) ⁄1 𝑇𝑇

, �𝑦𝑦𝑜𝑜
′(𝑖𝑖)=

( �𝑦𝑦𝑜𝑜
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• The regularization 𝑅𝑅 corresponds to a simple weight decay of 0.0005.

[1] Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. NIPS 2014





Performance for the single New Task Scenario.



Performance for the multiple New Task Scenario.



Influence of Dataset Size
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