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Introduction

• Generally, previous works on recommender system can be
classified into neighborhood-based methods and model-based
methods.

• Neighborhood-based methods are likely to predict rating values
in the range of 4 to 5.

• Model-based methods usually predict rating values based on
(1) all rating values with missing values being replaced to 0, or
(2) observed rating values only (missing at random assumption).
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Introduction

• Yahoo! LaunchCast users were asked to report the frequency
with which they choose to rate a song given their preference for
that song [5].

• The choice to rate a song depends on the user’s opinion of that
song.

• Users were also directly asked if they thought their preferences
for a song do not affect whether they choose to rate it.

– 64.85% of users responded that their preferences do affect their
choice to rate a song [5].
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Introduction

• About 90% of the ratings in the YouTube data take the maximum
rating value [7].

• The marginal distributions of
(e) existing rating values, and
(f) new rating values of randomly selected songs [5]

are significantly different.
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Missing Data Theory

• Let N be the number of users, D be the number of items, and V
be the number of rating values.

• Let X = [xnd]N×D where xnd denotes the rating of user n for item
d.

• Let R = [rnd]N×D be a binary matrix where rnd = 1 denotes the
observation of xnd.

• X is divided into Xobs and Xmis where

Xobs = {xnd : rnd = 1}, Xmis = {xnd : rnd = 0}.
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Missing Data Theory

• We model the data as a two-step procedure:
1 A data model P(X|θ) generates the full data.
2 A missing data model P(R|X, µ) determines which elements in X

are observed.
P(R,X|µ, θ) = P(R|X, µ)P(X|θ)

• According to [4], there are three kinds of missing data
assumptions:

1 Missing Completely At Random (MCAR):

P(R|X, µ) = P(R|µ).

2 Missing At Random (MAR):

P(R|X, µ) = P(R|Xobs, µ).

3 Not Missing At Random (NMAR)
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Missing Data Theory

• Under the MAR assumption, the missing data model can be
ignored∫

Xmis
P(R,X|µ, θ)dXmis =

∫
Xmis

P(R|Xobs, µ)P(X|θ)dXmis

= P(R|Xobs, µ)

∫
Xmis

P(X|θ)dXmis

= P(R|Xobs, µ)P(Xobs|θ)

• Since the above derivation fails to hold under the NMAR
assumption, we should consider the missing data model.
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Models for Non-Random Missing Data

1. MM/CPT-v ([5])
• Multinomial Mixture Data Model P(X|θ, φ)

θ = (θ1, . . . , θK) ∼ Dir(α, . . . , α),

P(zn = k|θ) = θk,

φkd = (φkd1, . . . , φkdV) ∼ Dir(β, . . . , β),

P(xnd = v|zn = k, φ) = φkdv.

– The ordinal nature of rating values is ignored.

• CPT-v Missing Data Model P(R|X, µ)

µ = (µ1, . . . , µV) ∼ Beta(a, b)V ,

P(rnd = 1|xnd = v, µ) = µv.

– The probability of missing depends only on the rating value.
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Models for Non-Random Missing Data

2. MM/Logit-vd ([6, 7])
• Multinomial Mixture Data Model P(X|θ, φ)

• Logit-vd Missing Data Model P(R|X, µ, ω)

µ = (µ1, . . . , µV) ∼ N(0, σ2
1)

V ,

ω = (ω1, . . . , ωD) ∼ N(0, σ2
2)

D,

P(rnd = 1|xnd = v, µ, ω) =
1

1 + exp(−µv − ωd)
.

– The probability of missing depends on the rating value and item.
– Only marginal effects are included in the model.
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Models for Non-Random Missing Data

3. RAPMF-r ([3])
• Probabilistic Matrix Factorization P(X|U,W, σ2)

U = (U1, . . . ,UN) ∼ N(0, σ2
U)

K×N ,

W = (W1, . . . ,WD) ∼ N(0, σ2
W)K×D,

xnd|Un,Wd, σ
2 ∼ N(UT

n Wd, σ
2).

• Rating Dominant Response Model P(R|U,W, µ, σ2)

µ = (µ1, . . . , µV) ∼ N(0, σ2
µ)

V ,

P(rnd|Un,Wd, µ, σ
2) =

V∑
v=1

αrnd
v (1− αv)

1−rnd N(v|UT
n Wd, σ

2),

where αv =
eµv

1+eµv .
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Models for Non-Random Missing Data

4. RAPMF-c ([3])
• Probabilistic Matrix Factorization P(X|U,W, σ2)

• Context-aware Response Model P(R|U,W, µ, σ2)

θU ∼ N(0, λ2
U)

K ,

θW ∼ N(0, λ2
W)K ,

µ = (µ1, . . . , µV) ∼ N(0, σ2
µ)

V ,

P(rnd|Un,Wd, µ, σ
2) =

V∑
v=1

αrnd
ndv(1− αndv)

1−rnd N(v|UT
n Wd, σ

2),

where αndv =
eµv+UT

n θU+WT
d θW

1+eµv+UT
n θU+WT

d θW
.
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Models for Non-Random Missing Data

5. Bayesian-BM/OR ([1])
• Binomial Mixture Model P(X|θ, φ)

θ = (θ1, . . . , θK) ∼ Dir(α, . . . , α),

P(zn = k|θ) = θk,

φk = (φk1, . . . , φkD) ∼ Beta(a, b)D,

xnd|zn = k, φ ∼ 1 + Bin(V − 1, φkd).

• Bernoulli OR Model P(R|X, µ, ν, γ)

µ = (µ1, . . . , µN) ∼ Beta(c, d)N , Und|µn ∼ Bern(µn),

ν = (ν1, . . . , νD) ∼ Beta(e, f )D, Mnd|νd ∼ Bern(νd),

γ = (γ1, . . . , γV) ∼ Beta(g, h)V , Tnd|xnd = v, γ ∼ Bern(γv),

rnd = 1− (1− Und)(1−Mnd)(1− Tnd).
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Proposed Model

Motivation

• In previous works, complex relationships among users, items and
rating values are not modeled in the missing data model.

• There are different patterns in rating and missing.
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Proposed Model

• Data Model P(X|θ)

θn = (θn1, . . . , θnD) ∼ DP
(
α1,FD),

xnd|θn ∼ G(θnd).

– The distribution pair (F,G) can be beta-binomial or
gamma-truncated Poisson distribution.

• Missing Data Model P(R|X, µ)

µn = (µn1, . . . , µnV) ∼ DP
(
α2,Beta(a, b)V)

P(rnd = 1|xnd = v, µn) = µnv.
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