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Mixture of finite mixtures

% A mixture of finite mixtures (MFM) model:

K ~ px where px is a pmfon {1,2,...}

7wk = (71, ..., 7k)|K ~ Dirk(v,...,7)
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* The Dirichlet process mixture (DPM) model:
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Exchangeable partition distribution

o Let C = {Ek:|Ek| > 0} where Ex ={i € [n]:zi=k} for k=1,2,....
% Under the MFM, the pmf of C is
p(C) = Va(t) J[ A1 (3)

ceC
where t = |C| is the number of blocks in the partition and

Vi) =2 (VIZ;)(") Q)

k=1

Here x(™ = x(x + 1)+ (x +m—1) and x(m) = x(x — 1)+ (x — m +1).
e C is an exchangeable random partition of [n].

e V,(t) always converges to a finite value. If t < n it converges rapidly.



Exchangeable partition distribution

% Under the MFM, the pmf of C is

p(@) = V() [T
ceC
* Under the DPM, the pmf of C is
por(C) = V2 P (1) [ J (el = 1)!

ceC

where VPP (t) = [{a/a”}p(a)da



Polya urn scheme

% Polya urn scheme of the MFM:

® Initialize with a single cluster consisting of element 1 alone: C; = {{1}}.
® For n=2,3,..., element n is placed in

e an existing cluster ¢ € C,—1 with probability
o |ef +

e a new cluster with probability

where t = |Cn_1|

* CRP: « |¢|, x «



Random discrete measures

e With K, m1.x and 0. in the MFM model, let

K
Bi(=02) © " med,
k=1

% If H is continuous, then 81 ~ H and

Va(t+1 :
p(ﬁn‘ﬂl, e 7/3,771) X ﬁfyl‘l + Z(nj + ’Y)(Sﬁj«
n =
where B, ..., B{ are the distinct values taken by (1, ..., 8,—1 and

nj={i€ln—1]: 8 =g}
* DPM: §; & 3°%° midg, ~ DP(a)

t
p(ﬁn‘/gl, P ,ﬁn—l) X aH + Z nj(sﬁj*
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Relationship between the number of clusters and number of components

% For given x1.5, if px(1),...,px(k) > 0 then as n — oo
Ip(IC| = klx1:n) = p(K = k|x1:)| — 0
i.e,p(IC| < k|K = k,x1.n) = 0

which means that the MFM prior on t = |C| converges to the prior on K as n grows.

* In a Dirichlet process, the prior on t takes a particular parametric form and diverges
at log n rate.
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Distribution of the cluster sizes

e Let A= (Ai,...,Ar) be the ordered partition of [n] obtained by randomly ordering
the clusters of C and let S = (Si1,...,S7) be the vector of block sizes of A, i.e.,
Sk = |Axl.
% MFM: Sizes of the clusters are similar order.

t

p(S=sT=t)= mHs?fl
k=1

where x is a normalization constant.

* DPM: Sizes of the clusters are vary widely, with a few large clusters and many very
small clusters.

t
por(S =s|T =t) = kpp l_Isf1
k=1

where kpp = V,CF (t)n!/tl.
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Inference algorithms

% Inference algorithm for the MFM:

® Initialize C = {[n]}
® Fori=1,...,n: Remove element j from C and place it

e in c € C\ i with probability
m(Xcui)

o ([cf +7)m

where m(x.) = [ [H,EC fg(X,’)] H(d6)
e in a new cluster with probability
Vi(t+1)
Vn(t) m(X’)
where t = |C \ /|
©® Repeat the above steps N times to obtain N samples:

This is direct adaptation of “Algorithm 3" for DPMs. When m(x.) can not be
computed, we can apply an auxiliary variable technique such as “Algorithm 8"

* For DPMs, |c| + vy is replaced by v and v V,(t + 1)/ V,(t) is replaced by a.



Mixture of finite latent feature models



Mixture of finite latent feature models

% A mixture of finite latent factor model (MFLFM):
K ~ pk where pk is a pmfon {0,1,2,...}
wk\KﬁBeta(a,l) fork=1,...,K (4)
Ziky - o Znk|Thy K i Bernoulli(mg) for k =1,..., K

* Indian buffet process (IBP): A limit of the followings as K — oo:

mi|K % Beta (a/K,1) for k=1,...,K -
Ziky -+ Znk|Tk IS Bernoulli(mg) for k=1,..., K
iid

2- parameter IBP 7« |K ~ Beta (a8/K, f3)



Probability of lof equivalence class

% MFLFM: If px = Poisson(7y),

p(Z) = L9 e (—mZ H )
IThso" K Hmlte

* IBP:

Ky
HB(mk+a,n—mk+1)
k=1

P([Z]) = ﬁ (—az ) |:HB(mk,n—mk+1)

2-parameter |IBP:

(aB)” . 8
B([2) = Hi_lKexp<—aZJ+51)

HB mi, n — mg + f3)




Restaurant process

* MFLFM:

@ The first customer tries Poisson(ay/(1 + «)) dishes.
® For every j > 2, the j-th customer

e tries each previously tasted dish independently with probability

my + «
Jt o
where my is the number of people who have tried dish k;
e and tries )
1 !
Poisson | ay= —

( 7] 111 I+ a)

new dishes

* IBP:

ﬂ; Poisson (ﬁ)
J J
2-parameter IBP:

my

- Poi _af
m, Poisson (ﬁ-l—j—l)



The number of factors

 MFLFM:
Kt ~ Poisson | « il : #
7 — | I+«
Jj=1 =1
and
n 1 n— oo
i
EK Z na+1 <
j=1
* IBP: KT ~ Poisson (a i Jl) and

n

EK+~Zl~|ogn
J

Jj=1

2-parameter IBP: K™ ~ Poisson (a > %) and EK* ~ 377 Jl ~ logn



Posterior consistency

o Posterior consistency of the number of factors
P(K* < kon|x1n) -3 0, P(K* > kon|x1.0) 3 0,
e For the first term

ity FOal®)AP(B)  P(K* < ko)

P(K < kOn‘xl:n) - ff(X1n|¢)dP(¢) - ff(X1n|¢)dP(¢)



