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Mixture of finite mixtures

F A mixture of finite mixtures (MFM) model:

K ∼ pK where pK is a pmf on {1, 2, . . . }
π1:K = (π1, . . . , πK )|K ∼ DirK (γ, . . . , γ)

z1, . . . , zn|π1:K
iid∼ π1:K

θ1, . . . , θK |K
iid∼ H

xi |zi ,θ1:K
ind∼ fθzi for i = 1, . . . , n

(1)

* The Dirichlet process mixture (DPM) model:

B1,B2, . . .
iid∼ Beta(1, α)

z1, . . . , zn|π1:∞
iid∼ π1:∞, where πk = Bk

∏k
l=1(1− Bl)

θ1, θ2, . . .
iid∼ H

xi |zi ,θ1:∞
ind∼ fθzi for i = 1, . . . , n

(2)



Exchangeable partition distribution

• Let C = {Ek : |Ek | > 0} where Ek = {i ∈ [n] : zi = k} for k = 1, 2, . . . .

F Under the MFM, the pmf of C is

p(C) = Vn(t)
∏
c∈C

γ(|c|) (3)

where t = |C| is the number of blocks in the partition and

Vn(t) =
∞∑
k=1

k(t)
(γk)(n)

pK (k)

Here x (m) = x(x + 1) · · · (x + m − 1) and x(m) = x(x − 1) · · · (x −m + 1).

• C is an exchangeable random partition of [n].

• Vn(t) always converges to a finite value. If t � n it converges rapidly.



Exchangeable partition distribution

F Under the MFM, the pmf of C is

p(C) = Vn(t)
∏
c∈C

γ(|c|)

* Under the DPM, the pmf of C is

pDP(C) = VDP
n (t)

∏
c∈C

(|C| − 1)!

where VDP
n (t) =

∫
{αt/α(n)}p(α)dα



Polya urn scheme

F Polya urn scheme of the MFM:

1 Initialize with a single cluster consisting of element 1 alone: C1 = {{1}}.
2 For n = 2, 3, . . . , element n is placed in

• an existing cluster c ∈ Cn−1 with probability

∝ |c|+ γ

• a new cluster with probability

∝ Vn(t + 1)

Vn(t)
γ

where t = |Cn−1|
* CRP: ∝ |c|, ∝ α



Random discrete measures

• With K , π1:K and θ1:K in the MFM model, let

βi (= θzi )
iid∼

K∑
k=1

πkδθk

F If H is continuous, then β1 ∼ H and

p(βn|β1, . . . , βn−1) ∝ Vn(t + 1)

Vn(t)
γH +

t∑
j=1

(nj + γ)δβ∗
j

where β∗1 , . . . , β
∗
t are the distinct values taken by β1, . . . , βn−1 and

nj = |{i ∈ [n − 1] : βi = β∗j }|

* DPM: βi
iid∼
∑∞

k=1 πkδθk ∼ DP(α)

p(βn|β1, . . . , βn−1) ∝ αH +
t∑

j=1

njδβ∗
j



Relationship between the number of clusters and number of components

F For given x1:n, if pK (1), . . . , pK (k) > 0 then as n→∞

|p(|C| = k|x1:n)− p(K = k|x1:n)| → 0

i .e., p(|C| < k|K = k, x1:n)→ 0

which means that the MFM prior on t = |C| converges to the prior on K as n grows.

* In a Dirichlet process, the prior on t takes a particular parametric form and diverges
at log n rate.





Distribution of the cluster sizes

• Let A = (A1, . . . ,AT ) be the ordered partition of [n] obtained by randomly ordering
the clusters of C and let S = (S1, . . . , ST ) be the vector of block sizes of A, i.e.,
Sk = |Ak |.

F MFM: Sizes of the clusters are similar order.

p(S = s|T = t) ≈ κ
t∏

k=1

sγ−1
i

where κ is a normalization constant.

* DPM: Sizes of the clusters are vary widely, with a few large clusters and many very
small clusters.

pDP(S = s|T = t) = κDP

t∏
k=1

s−1
i

where κDP = VDP
n (t)n!/t!.





Inference algorithms

F Inference algorithm for the MFM:

1 Initialize C = {[n]}
2 For i = 1, . . . , n: Remove element i from C and place it

• in c ∈ C \ i with probability

∝ (|c|+ γ)
m(xc∪i )

m(xc)

where m(xc) =
∫ [∏

i∈c fθ(xi )
]
H(dθ)

• in a new cluster with probability

∝ Vn(t + 1)

Vn(t)
m(xi )

where t = |C \ i |
3 Repeat the above steps N times to obtain N samples:

This is direct adaptation of “Algorithm 3” for DPMs. When m(xc) can not be
computed, we can apply an auxiliary variable technique such as “Algorithm 8”

* For DPMs, |c|+ γ is replaced by γ and γVn(t + 1)/Vn(t) is replaced by α.



Mixture of finite latent feature models



Mixture of finite latent feature models

F A mixture of finite latent factor model (MFLFM):

K ∼ pK where pK is a pmf on {0, 1, 2, . . . }

πk |K
iid∼ Beta (α, 1) for k = 1, . . . ,K

z1k , . . . , znk |πk ,K
iid∼ Bernoulli(πk) for k = 1, . . . ,K

(4)

* Indian buffet process (IBP): A limit of the followings as K →∞:

πk |K
iid∼ Beta (α/K , 1) for k = 1, . . . ,K

z1k , . . . , znk |πk
iid∼ Bernoulli(πk) for k = 1, . . . ,K

(5)

2- parameter IBP πk |K
iid∼ Beta (αβ/K , β)



Probability of lof equivalence class

F MFLFM: If pK = Poisson(γ),

P([Z]) =
(αγ)K+∏2n−1
h=0 Kh

exp

(
−αγ

n∑
j=1

1

j

j∏
l=1

l

l + α

)[
K+∏
k=1

B(mk + α, n −mk + 1)

]

* IBP:

P([Z]) =
(α)K+∏2n−1
h=0 Kh

exp

(
−α

n∑
j=1

1

j

)[
K+∏
k=1

B(mk , n −mk + 1)

]
2-parameter IBP:

P([Z]) =
(αβ)K+∏2n−1
h=0 Kh

exp

(
−α

n∑
j=1

β

j + β − 1

)[
K+∏
k=1

B(mk , n −mk + β)

]



Restaurant process

F MFLFM:

1 The first customer tries Poisson(αγ/(1 + α)) dishes.
2 For every j ≥ 2, the j-th customer

• tries each previously tasted dish independently with probability

mk + α

j + α

where mk is the number of people who have tried dish k;
• and tries

Poisson

(
αγ

1

j

j∏
l=1

l

l + α

)
new dishes

* IBP:
mk

j
; Poisson

(
α

j

)
2-parameter IBP:

mk

β + j − 1
; Poisson

(
αβ

β + j − 1

)



The number of factors

F MFLFM:

K+ ∼ Poisson

(
αγ

n∑
j=1

1

j

j∏
l=1

l

l + α

)
and

EK+ ∼
n∑

j=1

1

nα+1

n→∞
< ∞

* IBP: K+ ∼ Poisson
(
α
∑n

j=1
1
j

)
and

EK+ ∼
n∑

j=1

1

j
∼ log n

2-parameter IBP: K+ ∼ Poisson
(
α
∑n

j=1
β

β+j−1

)
and EK+ ∼

∑n
j=1

1
j
∼ log n



Posterior consistency

• Posterior consistency of the number of factors

P(K+ < k0n|x1:n)
P0→ 0, P(K+ > k0n|x1:n)

P0→ 0,

• For the first term

P(K+ < k0n|x1:n) =

∫
{K+<k0n}

f (x1:n|φ)dP(φ)∫
f (x1:n|φ)dP(φ)

≤ P(K+ < k0n)∫
f (x1:n|φ)dP(φ)


