Mixture models with a prior on the number of components

Miller and Harrison, JASA, to be appear

Presented by Ilsang Ohn

October 21, 2017

Mixture of finite mixtures

* A mixture of finite mixtures (MFM) model:

$$
\begin{align*}
K & \sim p_{K} \text { where } p_{K} \text { is a pmf on }\{1,2, \ldots\} \\
\pi_{1: K}=\left(\pi_{1}, \ldots, \pi_{K}\right) \mid K & \sim \operatorname{Dir}_{K}(\gamma, \ldots, \gamma) \\
z_{1}, \ldots, z_{n} \mid \boldsymbol{\pi}_{1: K} & \stackrel{\text { iid }}{\sim} \pi_{1: K} \tag{1}\\
\theta_{1}, \ldots, \theta_{K} \mid K & \stackrel{\text { id }}{\sim} H \\
x_{i} \mid z_{i}, \boldsymbol{\theta}_{1: K} & \stackrel{\text { ind }}{\sim} f_{\theta_{z_{i}}} \text { for } i=1, \ldots, n
\end{align*}
$$

* The Dirichlet process mixture (DPM) model:

$$
\begin{align*}
B_{1}, B_{2}, \ldots & \stackrel{\text { iid }}{\sim} \operatorname{Beta}(1, \alpha) \\
z_{1}, \ldots, z_{n} \mid \pi_{1: \infty} & \stackrel{\text { iid }}{\sim} \pi_{1: \infty}, \text { where } \pi_{k}=B_{k} \prod_{l=1}^{k}\left(1-B_{l}\right) \tag{2}\\
\theta_{1}, \theta_{2}, \ldots & \stackrel{\text { id }}{\sim} H \\
x_{i} \mid z_{i}, \boldsymbol{\theta}_{1: \infty} & \stackrel{\text { ind }}{\sim} f_{\theta_{z_{i}}} \text { for } i=1, \ldots, n
\end{align*}
$$

Exchangeable partition distribution

- Let $\mathcal{C}=\left\{E_{k}:\left|E_{k}\right|>0\right\}$ where $E_{k}=\left\{i \in[n]: z_{i}=k\right\}$ for $k=1,2, \ldots$.
\star Under the MFM, the pmf of \mathcal{C} is

$$
\begin{equation*}
p(\mathcal{C})=V_{n}(t) \prod_{c \in \mathcal{C}} \gamma^{(|c|)} \tag{3}
\end{equation*}
$$

where $t=|\mathcal{C}|$ is the number of blocks in the partition and

$$
V_{n}(t)=\sum_{k=1}^{\infty} \frac{k_{(t)}}{(\gamma k)^{(n)}} p_{K}(k)
$$

Here $x^{(m)}=x(x+1) \cdots(x+m-1)$ and $x_{(m)}=x(x-1) \cdots(x-m+1)$.

- \mathcal{C} is an exchangeable random partition of $[n]$.
- $V_{n}(t)$ always converges to a finite value. If $t \ll n$ it converges rapidly.

Exchangeable partition distribution

\star Under the MFM, the pmf of \mathcal{C} is

$$
p(\mathcal{C})=V_{n}(t) \prod_{c \in \mathcal{C}} \gamma^{(|c|)}
$$

* Under the DPM, the pmf of \mathcal{C} is

$$
p_{\mathrm{DP}}(\mathcal{C})=V_{n}^{\mathrm{DP}}(t) \prod_{c \in \mathcal{C}}(|\mathcal{C}|-1)!
$$

where $V_{n}^{\mathrm{DP}}(t)=\int\left\{\alpha^{t} / \alpha^{(n)}\right\} p(\alpha) \mathrm{d} \alpha$

Polya urn scheme

\star Polya urn scheme of the MFM:
(1) Initialize with a single cluster consisting of element 1 alone: $\mathcal{C}_{1}=\{\{1\}\}$.
(2) For $n=2,3, \ldots$, element n is placed in

- an existing cluster $c \in \mathcal{C}_{n-1}$ with probability

$$
\propto|c|+\gamma
$$

- a new cluster with probability

$$
\propto \frac{V_{n}(t+1)}{V_{n}(t)} \gamma
$$

where $t=\left|\mathcal{C}_{n-1}\right|$

* CRP: $\propto|c|, \propto \alpha$

Random discrete measures

- With $K, \boldsymbol{\pi}_{1: K}$ and $\boldsymbol{\theta}_{1: K}$ in the MFM model, let

$$
\beta_{i}\left(=\theta_{z_{i}}\right) \stackrel{\mathrm{i} d}{\sim} \sum_{k=1}^{K} \pi_{k} \delta_{\theta_{k}}
$$

\star If H is continuous, then $\beta_{1} \sim H$ and

$$
p\left(\beta_{n} \mid \beta_{1}, \ldots, \beta_{n-1}\right) \propto \frac{V_{n}(t+1)}{V_{n}(t)} \gamma H+\sum_{j=1}^{t}\left(n_{j}+\gamma\right) \delta_{\beta_{j}^{*}}
$$

where $\beta_{1}^{*}, \ldots, \beta_{t}^{*}$ are the distinct values taken by $\beta_{1}, \ldots, \beta_{n-1}$ and $n_{j}=\left|\left\{i \in[n-1]: \beta_{i}=\beta_{j}^{*}\right\}\right|$

* DPM: $\beta_{i} \stackrel{\text { iid }}{\sim} \sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}} \sim \operatorname{DP}(\alpha)$

$$
p\left(\beta_{n} \mid \beta_{1}, \ldots, \beta_{n-1}\right) \propto \alpha H+\sum_{j=1}^{t} n_{j} \delta_{\beta_{j}^{*}}
$$

Relationship between the number of clusters and number of components
\star For given $\mathbf{x}_{1: n}$, if $p_{K}(1), \ldots, p_{K}(k)>0$ then as $n \rightarrow \infty$

$$
\begin{gathered}
\left|p\left(|\mathcal{C}|=k \mid \mathbf{x}_{1: n}\right)-p\left(K=k \mid \mathbf{x}_{1: n}\right)\right| \rightarrow 0 \\
i . e ., p\left(|\mathcal{C}|<k \mid K=k, \mathbf{x}_{1: n}\right) \rightarrow 0
\end{gathered}
$$

which means that the MFM prior on $t=|\mathcal{C}|$ converges to the prior on K as n grows.

* In a Dirichlet process, the prior on t takes a particular parametric form and diverges at $\log n$ rate.

Distribution of the cluster sizes

- Let $A=\left(A_{1}, \ldots, A_{T}\right)$ be the ordered partition of [n] obtained by randomly ordering the clusters of \mathcal{C} and let $S=\left(S_{1}, \ldots, S_{T}\right)$ be the vector of block sizes of A, i.e., $S_{k}=\left|A_{k}\right|$.
\star MFM: Sizes of the clusters are similar order.

$$
p(S=s \mid T=t) \approx \kappa \prod_{k=1}^{t} s_{i}^{\gamma-1}
$$

where κ is a normalization constant.

* DPM: Sizes of the clusters are vary widely, with a few large clusters and many very small clusters.

$$
p_{\mathrm{DP}}(S=s \mid T=t)=\kappa_{\mathrm{DP}} \prod_{k=1}^{t} s_{i}^{-1}
$$

where $\kappa_{\mathrm{DP}}=V_{n}^{\mathrm{DP}}(t) n!/ t!$.

Inference algorithms

* Inference algorithm for the MFM:
(1) Initialize $\mathcal{C}=\{[n]\}$
(2) For $i=1, \ldots, n$: Remove element i from \mathcal{C} and place it
- in $c \in \mathcal{C} \backslash i$ with probability

$$
\propto(|c|+\gamma) \frac{m\left(\mathbf{x}_{c \cup i}\right)}{m\left(\mathbf{x}_{c}\right)}
$$

where $m\left(\mathbf{x}_{c}\right)=\int\left[\prod_{i \in c} f_{\theta}\left(\mathbf{x}_{i}\right)\right] H(\mathrm{~d} \boldsymbol{\theta})$

- in a new cluster with probability

$$
\propto \frac{V_{n}(t+1)}{V_{n}(t)} m\left(x_{i}\right)
$$

where $t=|\mathcal{C} \backslash i|$
3 Repeat the above steps N times to obtain N samples:
This is direct adaptation of "Algorithm 3" for DPMs. When $m\left(\mathbf{x}_{c}\right)$ can not be computed, we can apply an auxiliary variable technique such as "Algorithm 8"

* For DPMs, $|c|+\gamma$ is replaced by γ and $\gamma V_{n}(t+1) / V_{n}(t)$ is replaced by α.

Mixture of finite latent feature models

Mixture of finite latent feature models

\star A mixture of finite latent factor model (MFLFM):

$$
\begin{align*}
K & \sim p_{K} \text { where } p_{K} \text { is a pmf on }\{0,1,2, \ldots\} \\
\pi_{k} \mid K & \stackrel{\text { iid }}{\sim} \operatorname{Beta}(\alpha, 1) \text { for } k=1, \ldots, K \tag{4}\\
z_{1 k}, \ldots, z_{n k} \mid \pi_{k}, K & \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}\left(\pi_{k}\right) \text { for } k=1, \ldots, K
\end{align*}
$$

* Indian buffet process (IBP): A limit of the followings as $K \rightarrow \infty$:

$$
\begin{array}{r}
\pi_{k} \mid K \stackrel{\text { iid }}{\sim} \operatorname{Beta}(\alpha / K, 1) \text { for } k=1, \ldots, K \tag{5}\\
z_{1 k}, \ldots, z_{n k} \mid \pi_{k} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}\left(\pi_{k}\right) \text { for } k=1, \ldots, K
\end{array}
$$

2- parameter IBP $\pi_{k} \mid K \stackrel{\text { iid }}{\sim} \operatorname{Beta}(\alpha \beta / K, \beta)$

Probability of lof equivalence class

\star MFLFM: If $p_{K}=\operatorname{Poisson}(\gamma)$,

$$
\mathbb{P}([\mathbf{Z}])=\frac{(\alpha \gamma)^{K_{+}}}{\prod_{h=0}^{2 n-1} K_{h}} \exp \left(-\alpha \gamma \sum_{j=1}^{n} \frac{1}{j} \prod_{l=1}^{j} \frac{l}{l+\alpha}\right)\left[\prod_{k=1}^{K_{+}} B\left(m_{k}+\alpha, n-m_{k}+1\right)\right]
$$

* IBP:

$$
\mathbb{P}([\mathbf{Z}])=\frac{(\alpha)^{K_{+}}}{\prod_{h=0}^{2 n-1} K_{h}} \exp \left(-\alpha \sum_{j=1}^{n} \frac{1}{j}\right)\left[\prod_{k=1}^{K_{+}} B\left(m_{k}, n-m_{k}+1\right)\right]
$$

2-parameter IBP:

$$
\mathbb{P}([\mathbf{Z}])=\frac{(\alpha \beta)^{K_{+}}}{\prod_{h=0}^{2 n-1} K_{h}} \exp \left(-\alpha \sum_{j=1}^{n} \frac{\beta}{j+\beta-1}\right)\left[\prod_{k=1}^{K_{+}} B\left(m_{k}, n-m_{k}+\beta\right)\right]
$$

Restaurant process

* MFLFM:
(1) The first customer tries Poisson $(\alpha \gamma /(1+\alpha))$ dishes.
(2) For every $j \geq 2$, the j-th customer
- tries each previously tasted dish independently with probability

$$
\frac{m_{k}+\alpha}{j+\alpha}
$$

where m_{k} is the number of people who have tried dish k;

- and tries

$$
\text { Poisson }\left(\alpha \gamma \frac{1}{j} \prod_{l=1}^{j} \frac{l}{l+\alpha}\right)
$$

new dishes

* IBP:

$$
\frac{m_{k}}{j} ; \text { Poisson }\left(\frac{\alpha}{j}\right)
$$

2-parameter IBP:

$$
\frac{m_{k}}{\beta+j-1} ; \text { Poisson }\left(\frac{\alpha \beta}{\beta+j-1}\right)
$$

The number of factors

\star MFLFM:

$$
K^{+} \sim \text { Poisson }\left(\alpha \gamma \sum_{j=1}^{n} \frac{1}{j} \prod_{l=1}^{j} \frac{l}{l+\alpha}\right)
$$

and

$$
\mathbb{E} K^{+} \sim \sum_{j=1}^{n} \frac{1}{n^{\alpha+1}} \stackrel{n \rightarrow \infty}{<} \infty
$$

* IBP: $K^{+} \sim \operatorname{Poisson}\left(\alpha \sum_{j=1}^{n} \frac{1}{j}\right)$ and

$$
\mathbb{E} K^{+} \sim \sum_{j=1}^{n} \frac{1}{j} \sim \log n
$$

2-parameter IBP: $K^{+} \sim \operatorname{Poisson}\left(\alpha \sum_{j=1}^{n} \frac{\beta}{\beta+j-1}\right)$ and $\mathbb{E} K^{+} \sim \sum_{j=1}^{n} \frac{1}{j} \sim \log n$

Posterior consistency

- Posterior consistency of the number of factors

$$
P\left(K^{+}<k_{0 n} \mid \mathbf{x}_{1: n}\right) \xrightarrow{\mathbb{P}_{0}} 0, \quad P\left(K^{+}>k_{0 n} \mid \mathbf{x}_{1: n}\right) \xrightarrow{\mathbb{P}_{0}} 0,
$$

- For the first term

$$
P\left(K^{+}<k_{0 n} \mid \mathbf{x}_{1: n}\right)=\frac{\int_{\left\{K^{+}<k_{0 n}\right\}} f\left(\mathbf{x}_{1: n} \mid \phi\right) \mathrm{d} P(\phi)}{\int f\left(\mathbf{x}_{1: n} \mid \phi\right) \mathrm{d} P(\phi)} \leq \frac{P\left(K^{+}<k_{0 n}\right)}{\int f\left(\mathbf{x}_{1: n} \mid \phi\right) \mathrm{d} P(\phi)}
$$

