
Recurrent Neural Network based Recommender
System

Yongchan Choi

26, Dec, 2017

Outline

I Introduction : Recurrent Neural Network

I Session-based Recommendation with RNN

I Improved RNN for session-based Recommendation

I RRN

I Joint training of ratings and reviews with RRN

RNN

I devised to model variable-length sequence data

I existence of an internal hidden state

Figure: RNN structure

RNN

I Share parameters W ,V ,U

I Update parameters using BPTT(Backpropagation through
time)

I Vanishing gradient problem (i.e difficult to keep long term
memory)
- LSTM, GRU

Session-based Recommender with RNN

I Many e-commerce recommender systems and most of news
and media sites do not typically track the user-id

I Neighborhood methods are based on co-occurrences of items
in sessions.

I But, Neighborhood methods cannot consider a sequential
data.

Session-based Recommender with RNN

Figure: The Structure of Session-based Recommender with RNN

I input : actual state of the session (1-of-N encoding)

I output : item of the next event in the session

Session-based Recommender with RNN

Practical points

I Session-Parallel mini-batch

I Sampling on the output

I Ranking loss

Session-based Recommender with RNN
Session-Parallel mini-batch

1. Create an order for the sessions

2. Use the first event of the first X sessions to form the input of
the first mini-batch

3. 2nd mini-batch is formed from the second events and so on

4. If any sessions end, the next available session is put in its place

I Sessions are assumed to be independent

I reset the appropriate hidden state when switch occurs

Session-based Recommender with RNN
Session-Parallel mini-batch

Figure: Session-Parallel mini-batches

Session-based Recommender with RNN
Sampling on the output

I Calculating a score for each item in each step would make the
algorithm scale with the product of the number of events.

I Unusable in practice

I Sample the output and compute the score for a small subset
of the items

I Only some of the weights will be updated

I need to compute scores for some negative examples and
modify the weighs so that the desired output is highly ranked

Session-based Recommender with RNN
Ranking loss

I Pointwise ranking was unstable in this network

I Use pairwise ranking loss

I Ls = − 1
Ns

∑NS
j=1 log(σ(r̂s,i − r̂s,j))

where NS is the sample size, r̂s,k is the score on item k at the
given point of the session. i is the desired item(next item in
the session) and j are the negative samples

I General ranking loss : 1
Ns

∑NS
j=1 I (r̂s,j > r̂s,i)

I To avoid unstability, Adding regularization term to the loss

I Ls = 1
Ns

∑NS
j=1 σ(r̂s,j − r̂s,i) + σ(r̂2s,j)

Improved RNN for session-based Recommendation

Figure: The structure of Improved RNN for session-based
Recommendation

I input : x = [x1, x2, ..., xn] where xi ∈ R (1 ≤ i ≤ n)

I output : y = [y1, y2, ..., ym] ∈ Rm where m is the number of
items

Improved RNN for session-based Recommendation

I Let xr+1 be the next click of the click sequence x

I Represent V (x) ∈ Rm as 1-Hot encoded vector

I Use loss L(M(x),V (xr+1))
where L is cross-entropy and y = M(x)

Improved RNN for session-based Recommendation
Data augment

I Given an input training session [x1, x2, ..., xn],
Generate the sequences and corresponding labels
([x1],V (x2)), ([x1, x2,V (x3)), ..., ([x1, x2, ..., xn−1],V (xn))
for training

I Embedding dropout

I Intuitively, Users may have accidentally clicked on items that
are not of interest

I Delete clicks randomly

Improved RNN for session-based Recommendation
Data augment

Figure: Embedding droupout

Improved RNN for session-based Recommendation
Adapting to temporal chages

I Learning a recommendation model on the entire dataset may
lead to worse performance since the model ends up focusing
on some out-of-date properties

I Use entire train data for pre-training

Improved RNN for session-based Recommendation
Use of privileged information

I The item sequence clicked by user after an item may also
contain information about that item

I Denote x∗ = [xn, xn−1, ..., xr+2] where n is the length of the
original session

I Minimize a loss of the form :
(1− λ)L(M(x),V (xn)) + λL(M(x),M∗(x∗)
where λ ∈ [0, 1] is a tradeoff parameter

Recurrent Recommender Networks

Figure: Left : time-independent Recommendation, Right :
time-dependent Recommendation

Recurrent Recommender Networks

Figure: The structure of Recurrent Neural Networks

Recurrent Recommender Networks

I input : yt = Wembed [xt , 1newbie , τt , τt−1]
where xt ∈ RM , M : the number of movies,

I ui ,mj : latent vectors for user, movie

I output r̂i ,j |t : the estimated rating of user i, movie j

I ut = LSTM(ut−1, yt)

I output : r̂i ,j |t = f (uit ,mjt , ui ,mj) =< ũit , m̃jt > + < ui ,mj >
where ũit , m̃jt are affine function of uit ,mjt

Recurrent Recommender Networks

I minimizeθ
∑

(I ,j ,t)∈Itrain .(ri ,j |t − r̂i ,j |t(θ))2 + R(θ)

I Parameter update using Subspace descent strategy

Joint training of ratings and reviews with RRN

Figure: The structure of JTRRRRN

Joint training of ratings and reviews with RRN

I xjoint,ij = φ(Wjoint [uit ,mjt , ui ,mj] + bjoint)

I and x̃ij ,k = [xoij,k , xjoint,ij]
where φ is some non-linear function.

I hij ,k = LSTM(hij ,k−1, x̃ij ,k and
ôij ,k = softmax(Wouthij ,k + bout)

Joint training of ratings and reviews with RRN

I L =
∑

i ,j∈Itrain [(r̂ij(θ)− rij)
2 − λ

∑nij
k=1 log(Pr(oi = ij , k |θ))]

I where Itrain is the training set of (i, j) paires, nij is the number
of characters in the review user i gives to movie j

I The review can be viewed as auxiliary task to facilitate rating
prediction

	Introduction

