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1. Hierarchical Attention

HART (Adam et al. 2017)
• Goal : Single object tracking in videos

Figure: (a) attention glimpse (b) apprearance attention (c)suppressing distractors



1. Hierarchical Attention

Architecture

Figure: The architecture of HART



1. Hierarchical Attention

Spatial Attention

• Input image : xt ∈ RH×W

• Ax
t ∈ Rw×W , Ay

t ∈ Rh×H

: Each matix contains one Gaussian per row.

• The attention glimpse : gt = Ay
t xt(A

x
t )T , (∈ Rh×w )



1. Hierarchical Attention

Appearance Attention

• V 1 : Rh×w → Rhv×wv×cv

• Dorsal stream computes foreground/background segmentation st
using DFN.

• Ventral stream extracts appearance-based features νt using CNN.

Figure: The architecture of the Appearance Attention

• Outputs of both stream combined as

vt = MLP(vec(νt � st))



2. Hierarchical Attention

State Estimation

• Equations

ot ,ht = LSTM(vt ,ht−1),

αt+1,∆at+1,∆b̂t = MLP(ot , vec(st)),

at+1 = at + tanh(c)∆at+1,

b̂t = at + ∆b̂t
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2. Loss

Loss of HART

• Loss :

LHART (D, θ) = λtLt(D, θ)+λsLs(D, θ)+λaLa(D, θ)+R(λ)+βR(D, θ),

with dataset D = {(x1:T ,b1:T )i}Mi=1 and network parameter θ



2. Loss

Tracking Loss

• Tracking Loss term is based on IoU of the predicted bounding box
w.r.t the ground truth.

Lt(D, θ) = Ep(b̂1:T |x1:T ,b1)[−log IoU(b̂t ,bt)],

• IoU(Intersection-over-Union)

IoU(a, b) =
a ∩ b

a ∪ b
=

area of overlap

area of union



2. Loss

Spatial Attention Loss

Ls(D, θ) = Ep(a1:T |x1:T ,b1)[−log(
at ∩ bt
area(bt)

)− log(1− IoU(at , xt))],

• The first term constrains the predicted attention to cover the
bounding box.

• The second term prevents it from becoming too large.



2. Loss

Appearance Attention Loss

La(D, θ) = Ep(a1:T ,s1:T |x1:T ,b1)[H(τ(at ,bt), st)],

, where H(p, q) = −
∑

z p(z)log q(z)

τ(at ,bt) : R4 × R4 → {0, 1}hv×wv

=

{
1 where the bounding box overlaps with glimpse

0 o.w.



2. Loss

Regularisation

• We apply the L2 regularisation to the parameters θ

R(D, θ) =
1

2
‖ θ ‖22 +

1

2
‖ Ep(α1:T |x1:T ,b1)[Ψt | αt ] ‖22

Adaptive Loss Weights

• We learn the loss weighting λ to avoid hyper-parameter tuniing.

R(λ) = −
∑
i

log(λ−1i )

, where λ = {λt , λs , λa},
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