
Coupled Group Lasso for Web-Scale CTR
Prediction in Display Advertising

(Yan et al.)

Presented by Jongjin Lee.

Seoul National University

ga0408@snu.ac.kr

April 25, 2018

1/16



CTR Prediction

I CTR : Click Through Rate
I Estimating the probalility that an advertisement is clicked

when displayed to a user in a specific context
I Web-scale CTR Prediction in display advertising(large scale

data sets)

2/16



Notation and Task

I Estimating P(Y = 1|X )

I xT = (xu
T , xa

T , xo
T )

Y = 1 or 0 whether the ad is clicked
I Focus on the senarios we can collect both user and ad

features.
– User : job, buying history of other products, ...
– Advertisement : description words, ...
– Context : daytime, weekdays, window size ...

3/16



Logistic Regression

I Due to its easy implementation and promising performance,
LR model has been widely used for CTR prediction

I Logistic Regression

h(x) = P(y = 1|x ,W ,V , b) =
1

1 + exp(−W T x)

I The loss

N∑
i=1

ξ(W ,V ,B; , x (i), y (i)) + λΩ(W ,V )

,ξ(W ,V ,B; , x (i), y (i)) = −log([h(x (1))]y
(i)[1− h(x (i))]1−y (i)

)

,Ω(W ,V ) is regularization term

I It can not capture the conjucntion information between user
features and ad features

4/16



Coupled Group Lasso
I The likelihood of CGL is formulated as follows

h(x) = P(y = 1|x ,W ,V , b)

= σ((xu
TW (xa

TV )T + bT xo), σ(x) =
1

1 + exp(−x)

I Loss is as follows
N∑
i=1

ξ(W ,V ,B; , x (i), y (i)) + λΩ(W ,V )

,ξ(W ,V ,B; , x (i), y (i)) = −log([h(x (1))]y
(i)[1− h(x (i))]1−y (i)

)

,Ω(W ,V ) = ‖W ‖2,1 + ‖V ‖2,1, ‖M‖2,1 =
l∑

i=1

√√√√ k∑
j=1

M2
ij

I W,V,B is l × k matrix, s × k matrix, d vector
I k ,λ is hyperparameter

5/16



Advantages of CGL

I CGL can capture the conjunction information from user
features and ad features.

– xu
TW (xu

TV )T = xTu (WV T )xa
I CGL can automatically eliminate useless features for both

users and ads, which may facilitate fast online prediction.
– Each row is a group.

6/16



Learning

I xu
TW (xu

TV )T makes objective function non-convex
I Each time we optimize one parameter with other parameters

fixed
I First fix V optimize(L-BFGS) W,b until converge, next fix W,

...
→ objective function convex

7/16



Algorithm

Figure: Algorithm

8/16



Web-Scale implementation: Hashing

I Web-scale applications always contain a huge number of users
and ad, with billions of impression instances.

I The data are mainly categorical, the number of which is
typically very large.

I Using hashing technique for efficient feature mapping and
istance generating.

Figure: The hashing framework

9/16



Web-Scale implementaition: Sub-sampling

I The data sets are typically highly unbalanced, with only a very
small proportion of positive instances.

I Sample negative instances with a probability of γ = 10% and
keep all the positive instances.

I After sampling, give a weight 1
γ to each negative instance

during learning to make the objective calculation unbiased

10/16



Web-Scale implementaion: Distributed Learning

I Need to compute the gradient of all the paremeters.
I Implement a distributed learning framework : MPI(Message

Passing Inference)
I Master node, Slaver nodes.

– Evenly distribute the whole data set to each node(number of
P).

– Calculate gradient g
′

p =
∑pn

i=1
∂ξ
∂t , t = Wij or Vij

11/16



Experiment on real data
I Three data sets from Taobao of Alibaba group

– Three datasets contain log information of display ads across
different time preriods with different time window sizes

– The subsequent day’s log information is used as test data

I Three datasets contain training data of 4 days, 10 days, and 7
days from difrrent time periods, respectively

Figure: Datasets

I MPI-cluster with 80 nodes, each of which is a 24-corserver
with 2.2GHz ...

12/16



Experiment on real data

I RelaImpr = AUC(model)−0.5
AUC(baseline)−0.5

Figure: RelaImpr

13/16



Experiment on real data
I Hyperparamters k, λ
I Larger k implies more parmeters. → because of memory and

speed. Choose k=50
I λ controls the tradeoff between the prediction accuract and

number of eliminated features

Figure: GSparsity

14/16



Experiment on real data

I GSparsity = v
l+s × 100%

,v is the total number of all-zero rows in parameter matrices
W and V.

I A GSparsity of 3% - 15% will be a godd trade off for both
feature elimination and prediction accuracy
→ choose corresponding λ

Figure: GSparsity for Dataset-2

15/16



The End

The End

16/16


