Personalized click prediction in sponsored search

Cheng, H., & Cantú-Paz, E. (2010)

Presenter: Sarah Kim 2018.04.25

1. Introduction

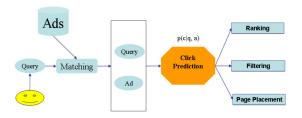


Figure 1: Overview of sponsored search system

Sponsored search: an Internet advertising system that generates most of the revenue of search engines by presenting targeted ads along with the search results.

1. Introduction

- Conventional approach
 - Use a machine learned model based on user-independent features to predict the click probability of ads.
 - Features for a machine learned model:
 - 1. the similarity of the query to the text of the ads;
 - 2. the historical performance of ads;
 - 3. contextual information (ex. time of day or day of the week).
 - √ This model will predict the same probability of click for every user.
- The objective of this paper is to design of pernalized click prediction models by developing new user-related features.

2. Click prediction

- Settings
 - ▶ $\mathcal{D} = \{(f(q_j, a_j), c_j)\}_{i=1}^n$: n training samples
 - $f(q_j, a_j) \in \mathbb{R}^d$: the *d*-dimensional feature space for query-ad pair j, $c_j \in \{-1, +1\}$: corresponding class label (+1: click or -1: non-click)
- Given a query q and ad a, the maximum entropy model (ME) formulates the click probability as follows:

$$p(c|q, a) = \frac{1}{1 + \exp(\sum_{i=1}^{d} w_i f_i(q, a))},$$

where $\mathbf{w} \in \mathbb{R}^d$ are weight parameters. Given the training set \mathcal{D} , \mathbf{w} estimated as

$$\hat{\mathbf{w}} = \operatorname{argmax} \Big[\sum_{j=1}^{n} \log(p(c_{j}|q_{j}, a_{j})) + \log(p(\mathbf{w})) \Big].$$

2. Click prediction

2.1 Features

- ▶ Features derived from the historical performace of ads:
 - Click-through rate (CTR) at position r:

$$CTR_r(q, a) = \frac{c_r(q, a)}{i_r(q, a)},$$

where $i_r(q,a)$ is the number of times that query q and ad a were shown together at position r, and $c_r(q,a)$ is the number of times those impression were clicked

Clicks over expected clicks (COEC):

$$\textit{COEC}(\textit{q}, \textit{a}) = \frac{\sum_{r=1}^{R} \textit{c}_r(\textit{q}, \textit{a})}{\sum_{r=1}^{R} \textit{i}_r(\textit{q}, \textit{a}) \times \textit{CTR}_r},$$

where CTR_r is the average CTR for each position r computed over all queries and ads and the denominator can be viewed as the expected clicks (ECs).

- NV: total number of ad views
- NCLI: total number of ad clicks

2. Click prediction

2.2 Feature quantization, conjunctions, and selection

► Feature quantization:

- ▶ In this work, the features are transformed into the log form and then quantized using simple K-means clustering.
- We introduce binary indicator features for each cluster, and use these binary features as inputs to the ME model.
- For new ads or new queris, we also use a binary indicator feature to indicate that a certain value is missing.

► Feature conjuctions:

- To model relationships among features, create feature conjunctions by taking the cross product of the binary indicators for pairs of features.
- ▶ We select the features to be conjoined using domain knowledge.

3. User click analysis

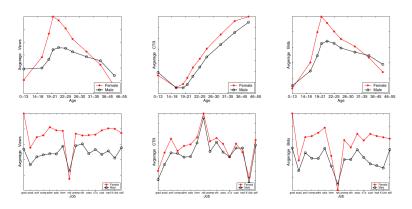


Figure 2 : User click, view and bid distributions with regard to demographic background

4. Personalized click prediction

- ▶ Let $\mathcal{D} = \{(f(q_j, a_j, u_j), c_j)\}_{j=1}^n$ represent the new training set, where each sample j represents a click or non-click event when ad a_j is presented to user u_j for query q_j .
- We develop a new click prediction function as:

$$p(c|q, a, u) = \frac{1}{1 + \exp(\sum_{i=1}^{d} w_i f_i(q, a, u))},$$

where $\mathbf{w} \in \mathbb{R}^d$ are weight parameters. Given the training set \mathcal{D} , \mathbf{w} estimated as

$$\hat{\mathbf{w}} = \operatorname{argmax} \Big[\sum_{i=1}^{n} \log(p(c_{j}|q_{j}, a_{j}, u_{j})) + \log(p(\mathbf{w})) \Big].$$

5. User features

1. Demographic group features

We partition users into demographic segments based on age, gender, marriage status, interests, job status, and occupation.

2. User-specific features

- User-specific features capture individual user's interaction with the ads shown in the search result page.
- ► $UCOEC_u = \frac{CTR \text{ of user } u}{\text{Average } CTR \text{ of } u'\text{s group}}$, where the average CTR is calculated for each user group and users are grouped together based on the total number of ads they have seen.
- ▶ We can also derive other user-specific click feedback features (EC, COEC, NV, NCLI) at the user, user-query, and user-ad levels.

6. Experiments

- The training and testing data were sampled from the Yahoo! sponsored search traffic logs for a period of 2 months.
- Online performance comparison: for online testing we selected the model with user and user-ad features.

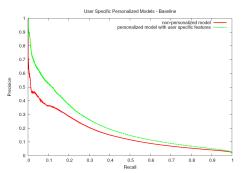


Figure 3: Online performance of the personalized model.