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Click prediction

Assume that there are historical click sequences.

RNN is a good model for sequential data.

Historical click sequence of a certain user is divided by different time
intervals.

RNN may have its limitation for these.

CNN architecture can fully extract local-global key feature.
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A Convolutional Click Prediction Model

Structure
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A Convolutional Click Prediction Model

Notation

o e; € R where ¢ is an embedding vector
e w € R? is a weight matrix

o s=le, ..., &€ R9%M is a instance matrix.
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A Convolutional Click Prediction Model

Convolution layer

@ One-dimensional Convolution step.

e Given w;, s;, convolution output r; = WiTs;J_w+1;j
forj=1,....n4+w—w

@ The optimized weight in the filter w detects feature and recognizes
specific ranges of neighborhood in input instance.
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A Convolutional Click Prediction Model

Flexible p-max pooling layer

@ Given a convolutional output vector r; € R"

@ p-max pooling selects a sub-vector s; € RP which contains the p
biggest values in r;

@ This strategy is due to the difference of each user's instance

dimension.
[ @a=/n"n i=1,..,0-1
°“_{3 i=1

@ where | is the total number of convolutional layers, n is the length of
the input instance.
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Feature Maps

° exp(x)+exp(—x)

o F': i-th order feature map (convolution 4 pooling -+ activation)
[ mj [ i—1

o Fi=)  Lyw,*xFy

@ softmax + negative log likelihood

Choi.Y CTR prediction models 2018.06.28 8 /19



A Convolut | Click Prediction Model

Result
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Position-Normalized Click prediction in Search Avertising
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Biased CTR estimates

@ The observed click-through data has been confounded by positional
bias.

@ Since users tend to click more on ads shown in higher position.
@ Want to find position-denoised CTR
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Position-Normalized Click prediction in Search Avertising

Notation

@ i: a quary-ad pair

@ j : ad position

@ v : the number of ad impressions.
@ The observed CTR = p(clickl|i, )
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Position-Normalized Click prediction in Search Avertising

Assumption

1. Clicking an ad is independent of its position, given that it is physically
examined.

2. Examining an ad is independent of its content or relevance, given its
position.

e p(click|i,j) = p(click|exam, i)p(exam|j)
e p(click|exam, i), denoted as p;, is a position-normalized CTR.

e p(exam|j), denoted as g, reflects the positional bias.
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Position-Normalized Click prediction in Search Avertising

The binomial model

e model : ¢;j ~ B(vj;, piqj), Vi, j
@ Training dataset D = {(cj;, vjj)}
e parameter § = (p, q)

Vij
o (0) = 5 108 (1) cyloglora) + (v — ) log(1 ~ )
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Position-Normalized Click prediction in Search Avertising

The binomial model

regarding one of model parameters as latent variable(e.g. q)

@ To estimate the MLE of both 6 = (p, q), Use E-M Algorithm
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Position-Normalized Click prediction in Search Avertising
The Poisson Model

e If n is sufficiently large and p is sufficiently small ( np — \)
@ We can approximate Binomial dist as Poisson dist
e Model : ¢jj ~ Poisson(vj;p;q;), Vi, j.
. ! > S
@ E-step: q; < Tvujp,
’ >iGi
- - e 2
o M-step : p; < Svid
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Position-Normalized Click prediction in Search Avertising

The Gamma-Poisson Model

@ Impose a gamma prior on q

e gj ~ Gamma(w, §),V).

o p(D. qlp,a, B) = II;; M2 erl=ipal) o I, _qﬁ_lgﬁ((;;j/ﬁ)
o E-step: qJ/- — %

o M-step : p:- — gjv;';j
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Position-Normalized Click prediction in Search Avertising

Simulation

1. V¥ position j € [1,...,m], generate a g; ~ Gamma(a, £),
sort ¢ in descending order, and scale g by 1/g1;

2. V query-ad pairi € [1,...,n|, generate a p; ~ Beta(y, §);
3. Vi, generate a number of impressions s; ~ Poisson(});

4. Vi, construct a multinomial distribution over positions
@i oc 1/ (ps/p(p:))?*, to push good ads higher up;

5. Vi, generate an impression allocation vector over posi-
tions v; ~ Multinomial(s;, ¢:), to form an nxm matrix
of impression V;

6. Derive an n x m matrix of CTRs Z =pq';

7. Derive an n x m matrix of Poisson means ¥ = V. Z,
where ‘.’ is element-wise multiplication;

8. Generate an n X m matrix of clicks C ~ Poisson(Y),
and C < min(C, V), element-wise.
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Position-Normalized Click prediction in Search Avertisin

Simulation
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