Hamiltonian Monte Carlo and Langevin Monte Carlo

Kuhwan Jeong ${ }^{1}$
${ }^{1}$ Department of Statistics, Seoul National University, South Korea

July, 2018

Introduction

- Hamiltonian Monte Carlo (HMC) suppresses the local random walk behavior in the Metropolis-Hastings algorithm, thus allowing it to move much more rapidly through the target distribution.
- The target density $P(x)$ is augmented by an independent distribution $P(p)$ where p is a momentum variable, thus defining a joint distribution $P(x, p)=P(x) P(p)$.
- Auxiliary variable p is introduced only to enable the algorithm to move faster through the parameter space.
- HMC is a Metropolis-Hastings algorithm which proposes $\left(x^{*}, p^{*}\right)$ satisfying $P(x, p) \approx P\left(x^{*}, p^{*}\right)$ using Hamiltonian dynamics.

Hamilton's Equations

- Let $x(t)$ be a location and $p(t)$ be a momentum at time t.
- For each location the object takes potential energy $U(x)$.
- For each momentum there is associated kinetic energy $K(p)$.
- The total energy of the system is constant and known as the Hamiltonian

$$
H(x, p)=U(x)+K(p)
$$

- The time evolution of the system is uniquely defined by Hamilton's equations:

$$
\begin{aligned}
\frac{d p}{d t} & =-\frac{\partial H}{\partial x}=-\frac{\partial U(x)}{\partial x} \\
\frac{d x}{d t} & =\frac{\partial H}{\partial p}=\frac{\partial K(p)}{\partial p}
\end{aligned}
$$

Discretizing Hamilton's Equations

- The Hamiltonian equations describe an object's motion in time.
- In order to simulate Hamiltonian dynamics numerically on a computer, it is necessary to approximate the Hamiltonian equations by discretizing time.
(1) Euler's Method

$$
\begin{aligned}
p_{i}(t+\delta) & =p_{i}(t)+\delta \frac{d p_{i}}{d t}(t)=p_{i}(t)-\delta \frac{\partial U}{\partial x_{i}}(x(t)) \\
x_{i}(t+\delta) & =x_{i}(t)+\delta \frac{d x_{i}}{d t}(t)=x_{i}(t)+\delta \frac{\partial K}{\partial p_{i}}(p(t))
\end{aligned}
$$

(2) Modified Euler's Method

$$
\begin{aligned}
p_{i}(t+\delta) & =p_{i}(t)-\delta \frac{\partial U}{\partial x_{i}}(x(t)) \\
x_{i}(t+\delta) & =x_{i}(t)+\delta \frac{\partial K}{\partial p_{i}}(p(t+\delta))
\end{aligned}
$$

Discretizing Hamilton's Equations

(3) The Leapfrog Method

$$
\begin{aligned}
p_{i}(t+\delta / 2) & =p_{i}(t)-(\delta / 2) \frac{\partial U}{\partial x_{i}}(x(t)) \\
x_{i}(t+\delta) & =x_{i}(t)+\delta \frac{\partial K}{\partial p_{i}}(p(t+\delta / 2)) \\
p_{i}(t+\delta) & =p_{i}(t+\delta / 2)-(\delta / 2) \frac{\partial U}{\partial x_{i}}(x(t+\delta))
\end{aligned}
$$

Discretizing Hamilton's Equations

Hamiltonian Monte Carlo

- We wish to sample d-dimensional x from

$$
P(x)=\frac{1}{Z} \exp (-U(x))
$$

- We introduce a d-dimensional auxiliary variable p such that

$$
p \sim \mathcal{N}(\mathbf{0}, M)
$$

where M is a symmetric, positive-definite matrix.

- The joint distribution of x and p is proportional to

$$
\begin{aligned}
P(x, p) & \propto \exp (-U(x)) \exp \left(-p^{T} M^{-1} p\right) \\
& =\exp \left(-U(x)-p^{T} M^{-1} p\right)
\end{aligned}
$$

- We define Hamiltonian function $H(x, p)$ and the kinetic energy $K(p)$ as

$$
H(x, p)=U(x)+K(p), K(p)=p^{T} M^{-1} p / 2
$$

Hamiltonian Monte Carlo

(1) Set $m=0$.
(2) Generate an initial position $x^{(0)}$.
(3) Repeat until $m=M$:

1. Set $m=m+1$.
2. Sample $p_{0} \sim \mathcal{N}(\mathbf{0}, M)$.
3. Set $x_{0}=x^{(m-1)}$.
4. Starting from $\left(x_{0}, p_{0}\right)$, do Leapfrog updates for L steps with stepsize δ to obtain $\left(x^{*}, p^{*}\right)$.
5. Calculate the Metropolis acceptance probability :

$$
\alpha=\min \left(1, \exp \left(-H\left(x^{*}, p^{*}\right)+H\left(x_{0}, p_{0}\right)\right)\right)
$$

6. Sample $u \sim U(0,1)$:

- If $u \leq \alpha$, set $x^{m}=x^{*}$.
- Otherwise, set $x^{m}=x^{m-1}$.

Simulation : Bivariate Normal distribution

- Bivariate normal distribution with $\rho=0.8$.

Simulation : 100-dimensional Normal distribution

- 100-dimensional

Figure 6: Values for the variable with largest standard deviation for the 100 -dimensional example, from a random-walk Metropolis run and an HMC run with $L=150$. To match computation time, 150 updates were counted as one iteration for random-walk Metropolis.

Langevin Monte Carlo

- A special case of HMC arises when the trajectory used to propose a new state consists of only a single leapfrog step.
- Suppose that $K(p)=\frac{1}{2} p^{T} p$.
- Given the current x, we sample $p \sim \mathcal{N}(\mathbf{0}, I)$, and then propose x^{*} and p^{*} as follows:

$$
\begin{align*}
& x_{i}^{*}=x_{i}-\frac{\delta^{2}}{2} \frac{\partial U}{\partial x_{i}}(x)+\delta p_{i} \tag{1}\\
& p_{i}^{*}=p_{i}-\frac{\delta}{2} \frac{\partial U}{\partial x_{i}}(x)-\frac{\delta}{2} \frac{\partial U}{\partial q_{i}}\left(q^{*}\right)
\end{align*}
$$

- We accept x^{*} with a probability

$$
\min \left[1, \exp \left\{-U\left(q^{*}\right)+U(q)-\frac{1}{2} \sum_{i}\left(p_{i}^{*}-p_{i}^{2}\right)\right\}\right]
$$

- We can rewrite (1) as

$$
\Delta x=\frac{\delta^{2}}{2} \frac{\partial \log P(x)}{\partial x}+\delta p,
$$

which is the gradient accent update with an additive Gaussian noise.

- Langevin Monte Carlo (LMC) without an accept/resject step is also used.
- LMC explore the distribution via an inefficient random walk, just like random-walk Metropolis updates.

Reference

- https://theclevermachine.wordpress.com/2012/11/18/mcmc-hamiltonian-monte-carlo-a-k-a-hybrid-monte-carlo/
- Neal, Radford M. "MCMC using Hamiltonian dynamics." Handbook of Markov Chain Monte Carlo 2 (2011): 113-162.
- Gelman, A., Carlin, J. B., Stern, H. S., \& Rubin, D. B. (1995). Bayesian data analysis. Chapman and Hall/CRC.

