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Introduction

Hamiltonian Monte Carlo (HMC) suppresses the local random walk behavior in the
Metropolis-Hastings algorithm, thus allowing it to move much more rapidly through the
target distribution.

The target density P(x) is augmented by an independent distribution P(p) where p is a
momentum variable, thus defining a joint distribution P(x, p) = P(x)P(p).

Auxiliary variable p is introduced only to enable the algorithm to move faster through the
parameter space.

HMC is a Metropolis-Hastings algorithm which proposes (x*, p*) satisfying
P(x,p) ~ P(x*, p*) using Hamiltonian dynamics.



Hamilton’s Equations

Let x(¢) be a location and p(#) be a momentum at time ¢.
For each location the object takes potential energy U(x).
For each momentum there is associated kinetic energy K(p).

The total energy of the system is constant and known as the Hamiltonian
H(x,p) = U(x) + K(p).
The time evolution of the system is uniquely defined by Hamilton’s equations:
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Discretizing Hamilton’s Equations

e The Hamiltonian equations describe an object’s motion in time.

e In order to simulate Hamiltonian dynamics numerically on a computer, it is necessary to
approximate the Hamiltonian equations by discretizing time.

(1) Euler’s Method
pi(t+68) = pi(t) + a%m =pi(t) — 52—5()6(!)),
by 50K
(1 +6) = xi() +8—°(1) = xi(1) +63pi (p(1)-

(2) Modified Euler’s Method

pi(t+6) = pi(t) — 6—(x(1)),

xi(t+8) = xi(r) + 5= (p(t + 9)).
dp



Discretizing Hamilton’s Equations

(3) The Leapfrog Method

Pl +5/2) = pi() ~ (5/2) 22 (x(),

50 +9) = () +ag—(p(r+6/z)>,

pi(t+6) = pi(1+6/2) - (5/2) (X(f+5))-



momentum (p)

momentum (p)

Discretizing Hamilton’s Equations

(a) Euler's Method, stepsize 0.3

(b) Modified Euler's Method, stepsize 0.3
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Hamiltonian Monte Carlo

We wish to sample d-dimensional x from

1
P(¥) =  exp(~U(x)).
We introduce a d-dimensional auxiliary variable p such that
p~N(0,M)

where M is a symmetric, positive-definite matrix.

The joint distribution of x and p is proportional to

P(x,p) o exp(—U(JC))e)sp (—p"M~'p)
= exp (= U®) —p"™M'p).

We define Hamiltonian function H(x, p) and the kinetic energy K (p) as

H(x,p) = Ux) + K(p). K(p) = p"M~'p/2.



Hamiltonian Monte Carlo

® Setm = 0.
® Generate an initial position x©),

® Repeatuntilm =M :

I. Setm =m+ 1.

. Sample pg ~ N (0, M).

Set xg = K=

. Starting from (x, po), do Leapfrog updates for L steps with stepsize 6 to obtain (x*, p™).
. Calculate the Metropolis acceptance probability :

EaC I S

W

o = min (l,exp(fH(x*,p*) +H(x0,p0))).

6. Sample u ~ U(0, 1) :
o Ifu < a,setx™ = x*.

o Otherwise, set ¥ = ¥~ 1.
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Simulation : Bivariate Normal distribution

e Bivariate normal distribution with p = 0.8.

Metropolis-Hastings

Hamiltonian Monte Carlo
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Simulation : 100-dimensional Normal distribution

¢ 100-dimensional
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Figure 6: Values for the variable with largest standard deviation for the 100-dimensional
example, from a random-walk Metropolis run and an HMC run with L = 150. To match
computation time, 150 updates were counted as one iteration for random-walk Metropolis.



Langevin Monte Carlo

A special case of HMC arises when the trajectory used to propose a new state consists of
only a single leapfrog step.

Suppose that K (p) = %pr.

Given the current x, we sample p ~ A/(0,7), and then propose x* and p* as follows:

8% oU
P =n— —— pi, 1
X =% 2ax,-(x)+p €]
80U SOV
™ 2aq,-q‘

We accept x* with a probability

min |:],exp{—U(q*) +U(q) — %Z(nf —p?)H .

1

‘We can rewrite (1) as
6% log P
Ay & OlogP(x)
2 Ox
which is the gradient accent update with an additive Gaussian noise.

+ dp,

Langevin Monte Carlo (LMC) without an accept/resject step is also used.

LMC explore the distribution via an inefficient random walk, just like random-walk
Metropolis updates.
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