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Introduction

• Hamiltonian Monte Carlo (HMC) suppresses the local random walk behavior in the
Metropolis-Hastings algorithm, thus allowing it to move much more rapidly through the
target distribution.

• The target density P(x) is augmented by an independent distribution P(p) where p is a
momentum variable, thus defining a joint distribution P(x, p) = P(x)P(p).

• Auxiliary variable p is introduced only to enable the algorithm to move faster through the
parameter space.

• HMC is a Metropolis-Hastings algorithm which proposes (x∗, p∗) satisfying
P(x, p) ≈ P(x∗, p∗) using Hamiltonian dynamics.
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Hamilton’s Equations

• Let x(t) be a location and p(t) be a momentum at time t.
• For each location the object takes potential energy U(x).
• For each momentum there is associated kinetic energy K(p).
• The total energy of the system is constant and known as the Hamiltonian

H(x, p) = U(x) + K(p).

• The time evolution of the system is uniquely defined by Hamilton’s equations:

dp
dt

= −
∂H
∂x

= −
∂U(x)

∂x
,

dx
dt

=
∂H
∂p

=
∂K(p)

∂p
.

3 / 12



Discretizing Hamilton’s Equations

• The Hamiltonian equations describe an object’s motion in time.
• In order to simulate Hamiltonian dynamics numerically on a computer, it is necessary to

approximate the Hamiltonian equations by discretizing time.

(1) Euler’s Method

pi(t + δ) = pi(t) + δ
dpi

dt
(t) = pi(t)− δ

∂U
∂xi

(x(t)),

xi(t + δ) = xi(t) + δ
dxi

dt
(t) = xi(t) + δ

∂K
∂pi

(p(t)).

(2) Modified Euler’s Method

pi(t + δ) = pi(t)− δ
∂U
∂xi

(x(t)),

xi(t + δ) = xi(t) + δ
∂K
∂pi

(p(t + δ)).
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Discretizing Hamilton’s Equations

(3) The Leapfrog Method

pi(t + δ/2) = pi(t)− (δ/2)
∂U
∂xi

(x(t)),

xi(t + δ) = xi(t) + δ
∂K
∂pi

(p(t + δ/2)),

pi(t + δ) = pi(t + δ/2)− (δ/2)
∂U
∂xi

(x(t + δ)).
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Discretizing Hamilton’s Equations
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Hamiltonian Monte Carlo

• We wish to sample d-dimensional x from

P(x) =
1
Z

exp(−U(x)).

• We introduce a d-dimensional auxiliary variable p such that

p ∼ N (0,M)

where M is a symmetric, positive-definite matrix.
• The joint distribution of x and p is proportional to

P(x, p) ∝ exp(−U(x)) exp
(
− pT M−1p

)
= exp

(
− U(x)− pT M−1p

)
.

• We define Hamiltonian function H(x, p) and the kinetic energy K(p) as

H(x, p) = U(x) + K(p), K(p) = pT M−1p/2.
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Hamiltonian Monte Carlo

1 Set m = 0.

2 Generate an initial position x(0).
3 Repeat until m = M :

1. Set m = m + 1.
2. Sample p0 ∼ N (0,M).
3. Set x0 = x(m−1).
4. Starting from (x0, p0), do Leapfrog updates for L steps with stepsize δ to obtain (x∗, p∗).
5. Calculate the Metropolis acceptance probability :

α = min
(

1, exp
(
− H(x∗, p∗) + H(x0, p0)

))
.

6. Sample u ∼ U(0, 1) :
• If u ≤ α, set xm = x∗ .
• Otherwise, set xm = xm−1 .
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Simulation : Bivariate Normal distribution

• Bivariate normal distribution with ρ = 0.8.
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Simulation : 100-dimensional Normal distribution

• 100-dimensional
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Langevin Monte Carlo

• A special case of HMC arises when the trajectory used to propose a new state consists of
only a single leapfrog step.

• Suppose that K(p) = 1
2 pT p.

• Given the current x, we sample p ∼ N (0, I), and then propose x∗ and p∗ as follows:

x∗i = xi −
δ2

2
∂U
∂xi

(x) + δpi, (1)

p∗i = pi −
δ

2
∂U
∂xi

(x)−
δ

2
∂U
∂qi

(q∗).

• We accept x∗ with a probability

min

[
1, exp

{
−U(q∗) + U(q)−

1
2

∑
i

(p∗i − p2
i )

}]
.

• We can rewrite (1) as

∆x =
δ2

2
∂ log P(x)

∂x
+ δp,

which is the gradient accent update with an additive Gaussian noise.
• Langevin Monte Carlo (LMC) without an accept/resject step is also used.
• LMC explore the distribution via an inefficient random walk, just like random-walk

Metropolis updates.
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