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Introduction

• Estimation of deep generative models have received much
attentions.

• There are two popular approaches, one is called variational auto
encoder (VAE, Kingma and Welling (2013)) and the other is
called generative adversarial networks (GAN, Goodfellow et al.
(2014)).

• Based on the auto encoder, we propose a simple and novel
approach to generative model.
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Basic structure of deep generative model

• In many studies of deep generative model, the marginal
distribution of observation x is assumed to be a mixture of latent
variables z given as:

P (x; θ) =

∫
z
P (x|z; θ)P (z)dz

where P (·|z; θ) is a decoder parametrized by θ.
• They model the marginal distribution of latent variable z, P (z),

to normal or uniform distribution.
• In this assumption, it requires many calculations to transform

latent variable into real data, thus decoder and encoder have to be
deep structures.
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Our contributions

• We propose a simple but efficient algorithm to estimate the
generate model for given data based on the auto-encoder, which
is called generative auto encoder (GAE).

• Especially, we do not design specific form of the marginal
distribution of latent variable, for instance N (0, I), and let the
distribution be determined by complexity of networks and
input data.

• By doing this, we expect that our method achieve similar or
superior performance with more compact structure than other
generative methods.
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Model description

• We model the marginal distribution of latent variable z to
mixture of train data as follows:

P (z;φ) =

∫
y
P (z|y;φ)dF̂ (y)

=
1

n

n∑
j=1

P (z|xj ;φ)

where P (·|y;φ) is a encoder parametrized by φ and {xj}nj=1 is
train data.

• Here, P (·|y;φ) is designed to a multivariate normal distribution,
that is, if z ∼ P (·|y;φ) then

z = µ(y;φ) + σ(y;φ)� ε, ε ∼ N (0, I)

where µ(y;φ) and σ(y;φ) are deep architectures based on NN.
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Model description

• Then the marginal distribution of an observation x can be
rewritten to the following:

P (x; θ, φ) =
1

n

n∑
j=1

∫
z
P (x|z; θ)P (z|xj ;φ)dz

• We estimate parameters θ and φ by maximizing the log
likelihood function:

n∑
i=1

log

 1

n

n∑
j=1

∫
z
P (xi|z; θ)P (z|xj ;φ)dz


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Regularization
• To avoid over-fitting, we give some regularization terms for µ(·;φ) and
σ(·;φ) as follows:

R(x, φ, λ1, λ2) = λ1

J∑
j=1

{
µ(x;φ)2j

}
+λ2

J∑
j=1

{
1 + log σ(x;φ)2j − σ(x;φ)2j

}
where λ1, λ2 > 0 are hyperparameters and J is dimension of the latent
space.

• The above regularization term is motivated by the regularization term
of VAE.

• Then the final objective function is given as:

n∑
i=1

log

 1

n

n∑
j=1

∫
z

P (xi|z; θ)P (z|xj ;φ)dz

+
n∑

i=1

R(xi, φ, λ1, λ2)
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Generation of samples

• Our proposed method has slightly different procedure to generate
samples because we also model P (z) to a mixture of train data.

• The procedure to generate samples is as follows:
1 Sample y from P̂ where P̂ is empirical distribution.
2 Given y, sample z from P (·|y;φ).
3 Given z, sample x from P (·|z; θ), which a generated sample

using our method.
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Estimation of parameters

• Note that the we can rewrite the log likelihood function as
follows:

n∑
i=1

log

[∫
y

∫
z
P (xi|z; θ)dF (z|xj ;φ)dF̂ (y)

]
• It is infeasible to calculate P (x; θ, φ), while P (x, z, y; θ, φ) is

easy to calculate which is given as

P (x, z, y; θ, φ) = P̂ (y) · P (z|y;φ) · P (x|z; θ).

• So we treat y as well as z as latent variables and optimize the log
likelihood using EM algorithm.
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Experiments

• We conduct 3 numerical experiments comparing our method
with other methods on multiple benchmark datasets.

1 First, we generate samples to confirm whether our method
generate visually realistic and diverse images.

2 Secondly we visualize the marginal distribution of latent variable
z. We expect that the more simple the architectures are the more
complex the marginal distribution of z is.

3 Lastly we conduct quantitative analysis to measure the
performance of our method. Two measures are used, KDE and
approximated log likelihood.
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Generated images
MNIST dataset

Figure : (Left) Generated samples using our method (Right) Generated
samples using VAE. All samples are generated randomly. It seems that our
method consistently generates visually realistic images.
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Generated images
Toronto Face Dataset (TFD)
• We forgot to save the best model...
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Visualization of latent space
MNIST dataset

Figure : We sample 1000 samples of latent variable and conduct kernel
density estimation using these samples. We use 2-dimensional latent space.
(Left) Estimated kernel density with 1-layered dec. and enc. (Right)
Estimated kernel density with 2-layered dec. and enc.
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Visualization of latent space
MNIST dataset

Figure : Using test dataset, we sample z from P (·|x;φ) and plot these zs. zs
are colored according to their true class label. (Left) Scatter plot with
1-layered dec. and enc. (Right) Scatter plot with 2-layered dec. and enc.



Introduction Proposed method Experiments

Quantitative analysis
Kernel density estimation (KDE)
• We generate 10,000 samples and conduct kernel density

estimation using these samples.
• Then we calculate test log likelihood of test data using the

estimated kernel density.

Method MNIST TFD
VAE(Kingma and Welling, 2013) 296.77 2572.59
GAN(Goodfellow et al., 2014) 300.331 2057
GMMN+AE(Li et al., 2015) 282 2294
AAE(Makhzani et al., 2015) 340 2252
GAE(1 layered) 456.71 2815.76
GAE(2 layered) 460.73 2796.91

Table : Test performances on MNIST and TFD datasets.
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Quantitative analysis
Approximated log likelihood
• Approximate test log likelihood by sampling latent variable z as

follows:

logP (x) ≈ log

[
1

S

S∑
s=1

P (x|zs; θ)

]
, zs ∼ P (z)

Method biMNIST
VAE(1 layered)(Kingma and Welling, 2013) -107.18
VAE(2 layered) -96.94
VAE(3 layered) -97.62
VAE(4 layered) -102.97
GAE(1 layered) -97.66
GAE(2 layered) -96.91
GAE(3 layered) -95.76
GAE(4 layered) -94.66

Table : Test performances on biMNIST dataset.
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