Learning by Mirror Averaging

A. Judisky, P. Rigollet and A. B. Tsybakov The Annals of Statistics

July 5, 2018

Abstract

- Construct a new estimator, called aggregate
- The aggregate consist of a simple recursive procedure which solves an auxiliary stochastic linear programming problem
- The aggregate satisfies sharp oracle inequalities under some general assumptions
- The results are applied to several problems regression, classification, density estimation

Terminologies in Model selection

- Given a collection of M estimators, construct a new estimator which is nearly as good as the best among them w.r.t. a given risk criterion
- $(\mathcal{Z},\mathfrak{F})$: measurable space (data)
- ullet Θ is a M-dim simplex (set of a weight for each estimator)

$$\Theta = \left\{ \theta \in \mathbb{R}^M : \sum_{j=1}^M \theta^{(j)} = 1, \theta^{(j)} \geq 0, j = 1, \cdots, M \right\}$$

- Z: r.v with values in Z, P: distribution of Z, E: corresponding expectation
- Observed *n* i.i.d. r.v.s : $Z_1, \dots, Z_n \sim P$ P_n, E_n : joint distribution and the corresponding expactation of Z_1, \dots, Z_n

Model selection

- $Q: \mathcal{Z} \times \Theta \to \mathbb{R}$: measurable function (loss)
- lacktriangledown Average risk function corresponding to Q:

$$A(\theta) = EQ(Z,\theta)$$

• **Aim**: "mimic the oracle" $\min_j A(e_j)$ (e_j : j-th coordinate unit vector in \mathbb{R}^M) Construct an estimator $\tilde{\theta}_n$ m'sble w.r.t. Z_1, \cdots, Z_n s.t.

$$E_{n}A(\tilde{\theta}_{n}) \leq \min_{1 \leq j \leq M} A(e_{j}) + \Delta_{n,M}$$

$$= \min_{\theta \in \{e_{1}, \dots, e_{M}\}} A(\theta) + \Delta_{n,M}$$
(1)

• $\Delta_{n,M}$: remaindeer term, should be as small as possible

Example

- $H = (h_1, \cdots, h_M)^{\top}$: a vector of preliminary estimators constructed from a training sample
 - supposed to be frozen in this thesis (each $\emph{h}_\emph{j}$ is a fixed function)
- $Q(z, \theta) = I(z, \theta^{\top} H)$ for some loss function I

Goal

- Under some assumption, the smallest possible value of $\Delta_{n,M}$ in a minimax sense has the form

$$\Delta_{n,M} = \frac{C \log M}{n} \tag{2}$$

with some constant C>0

- Constuct $\tilde{\theta}_n$ satisfies (1), (2)
 - Selector cannot achieve (2) "Model Mixture" rather than Model selection
 - construct $\tilde{\theta}_n$ with Mirror algorithm
 - $\tilde{\theta}_n$ satisfies (1), (2)
 - Some examples

Suboptimality of selectors

- $Q(z,\theta) = \frac{1}{2}\theta^{\top}\theta z^{\top}\theta, z \in \mathbb{R}^{M}$: squared loss
- P^k : M dimension gaussian distribution w/ mean $\frac{\sigma}{2}\sqrt{\frac{\log M}{n}}e_k$ and the covariance matrix σ^2I

Proposition 2.1. Let Q be the squared loss function. Assume that we observe i.i.d. random vectors Z_1, \dots, Z_n with the same distribution as Z. Denote by E_n^k the expectation w.r.t. the sample Z_1, \dots, Z_n when Z has distribution P_k . Then there exists an absolute constant c > 0 s.t.

$$\inf_{T_n} \sup_{k=1,\cdots,M} \left\{ E_n^k \left[A_k(T_n) \right] - \min_{1 \le j \le M} A_k(e_j) \right\} \ge c\sigma \sqrt{\frac{\log M}{n}}$$
 (3)

where the infimum is taken over all the selectors T_n

Mirror algorithm

- The name mirror averaging reflect the fact that the algorithm does a s.g.d. in the dual space with further "mirroring" to the primal space and averaging.
- If A is convex, then we can bound it from above by a linear function:

$$A(\theta) \leq \sum_{j=1}^{M} \theta^{(j)} A(e_j) \triangleq \tilde{A}(\theta)$$

where $ilde{A}(heta) = ilde{EQ}(Z, heta)$ with

$$\tilde{Q}(Z,\theta) \triangleq \theta^{\top} u(Z), u(Z) \triangleq (Q(Z,e_1), \cdots, Q(Z,e_M))^{\top}$$

Then $\tilde{A}(e_j) = A(e_j)$ for all j and $\min_{\theta \in \Theta} \tilde{A}(\theta) = \min_{1 \leq j \leq M} A(e_j)$ since Θ is a simplex.

Mirror algorithm

• For $\beta > 0$, define the function $W_{\beta} : \mathbb{R}^M \to \mathbb{R}$ by

$$W_{\beta}(z) \triangleq \beta \log \left(\frac{1}{M} \sum_{j=1}^{M} e^{-z^{(j)}/\beta} \right)$$
 (4)

• The gradient of W_{β} is given by

$$abla W_{eta}(z) = \left[-rac{e^{-z^{(i)}/eta}}{\sum_{k=1}^{M} e^{-z^{(k)}/eta}}
ight]_{j=1}^{N} \in \Theta$$

• Let $u_i = u(Z_i)$. Then $u_i = \nabla_{\theta} \tilde{Q}(Z_i, \theta)$.

Mirror algorithm

- Fix the initial calues $\theta_0 \in \Theta$ and $\zeta_0 \in \mathbb{R}^M$
- For $i=1,\cdots,n-1$, do the recursive update

$$\zeta_i = \zeta_{i-1} + u_i
\theta_i = -\nabla W_\beta(\zeta_i)$$
(5)

Output at iteration n the average

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n \theta_{i-1} \tag{6}$$

- The "mirroring" function ∇W_β maps the variables $\zeta_i \in (\mathbb{R}^M, I_\infty)$ to (Θ, I_1)
- W_{β} in (4) is not the only possible choice.

Main results

Let Q_1 be the function on $\mathcal{Z} \times \Theta \times \Theta$ defined by $Q_1(z, \theta, \theta') = Q(z, \theta) - Q(z, \theta')$ for all $z \in \mathcal{Z}$ and all $\theta, \theta' \in \Theta$.

Theorem 4.1. Assume that Q_1 can be decomposed into the sum of two functions $Q_1 = Q_2 + Q_3$ such that:

- The mapping $\theta \to -Q_2(z,\theta,\theta')/\beta$ is exponentially concave on the simplex Θ , for all $z \in \mathcal{Z}, \theta' \in \Theta$, and $Q_2(z,\theta,\theta) = 0$ for all $z \in \mathcal{Z}, \theta \in \Theta$
- There exists a function R on $\mathcal Z$ integrable with respect to P and such that $Q_3(z,\theta,\theta) \leq R(z)$, for all $z \in \mathcal Z, \theta, \theta' \in \Theta$.

Then the aggregate $\hat{\theta}_n$ satisfies, for any $M \geq 2, n \geq 1$, the following oracle inequality:

$$E_{n-1}A(\hat{\theta}_n) \leq \min_{1 \leq j \leq M} A(e_j) + \frac{\beta \log M}{n} + E[R(Z)].$$

Main results

Theorem 4.2. Assume that for some $\beta>0$ there exists a Borel function $\Psi_{\beta}:\Theta\times\Theta\to\mathbb{R}_{+}$ such that the mapping $\theta\to\Psi_{\beta}(\theta,\theta')$ is concave on the simplex Θ for any fixed $\theta\in\Theta$, $\Psi_{\beta}(\theta,\theta)=1$ and $E\exp(Q_{1}(Z,\theta,\theta)/\beta)\leq\Psi_{\beta}(\theta,\theta')$ for all $\theta,\theta'\in\Theta$. Then the aggregate $\hat{\theta}_{n}$ satisfies, for any $M\geq 2, n\geq 1$, the following oracle inequality:

$$E_{n-1}A(\hat{\theta}_n) \leq \min_{1 \leq j \leq M} A(e_j) + \frac{\beta \log M}{n} + E[R(Z)].$$

regression model

Corrollary 5.1. Consider the regression model $Y=f(X)+\xi$ where $X\in\mathcal{X},Y\in\mathbb{R},f\colon\mathcal{X}\to\mathbb{R}$ and $\xi=Y-f(X)$ is a real-valued random variable satisfying $E(\xi|X)=0$. Assume also that $E(Y^2)<\infty$ and $||f_j||_\infty\leq L, j=1,\cdots,M$, for some finite constant L>0. Then for any positive constants $B\geq (4L+2)^{-2}, LB< b<1/4$ and any $\beta\geq (b/B)^2$, the aggregate estimator $f_n(x)=\hat{\theta}_n^\top H(x), x\in\mathcal{X}$, where $\hat{\theta}_n$ is obtained by the mirror averaging algorithm, satisfies

$$||\hat{f}_n - f||_{2, P_X}^2 \le \min_{1 \le j \le M} ||f_j - f||_{2, P_X}^2 + \frac{\beta \log M}{n} + E[R_\beta(Y)]$$
 (7)

where

$$R_{\beta}(Y) = 4L|y|\mathbb{I}_{\{|y| \ge B\beta\}} + \frac{4L^{2}y^{2}}{B\beta}\mathbb{I}_{\{b\sqrt{\beta} < |y| < B\beta\}}$$

• If $|Y| \leq L_0$ and $\beta > 16L_0^2$, $R_{\beta}(Y) \equiv 0$

regression model

Corrollary 5.6. Consider the regression model $Y = f(X) + \xi$ where $X \in \mathcal{X}, Y \in \mathbb{R}, f \colon \mathcal{X} \to \mathbb{R}$ and, conditionally on X, the random variable $\xi = Y - f(X)$ is Gaussian with zero mena and variance bounded by σ^2 . Assume that $||f - f_j||_{\infty} \le \tilde{L}$, for some finite constant $\tilde{L} > 0$. Then for any $\beta \ge 2\sigma^2 + 2\tilde{L}^2$, the aggregate estimator $\tilde{f}_n(x) = \hat{\theta}_n^\top H(x), x \in \mathcal{X}$, where $\hat{\theta}_n$ is obtained by the mirror averaging algorithm, satisfies

$$E_{n-1}||\hat{f}_n - f||_{2,P_X}^2 \le \min_{1 \le j \le M} ||f_j - f||_{2,P_X}^2$$
 (8)

where

$$R_{\beta}(Y) = 4L|y|\mathbb{I}_{\{|y| \geq B\beta\}} + \frac{4L^2y^2}{B\beta}\mathbb{I}_{\{b\sqrt{\beta} < |y| < B\beta\}}$$