
Factor Graphs, the Sum-Product Algorithm and TrueSkillTM

Kuhwan Jeong 1

1Department of Statistics, Seoul National University, South Korea

July, 2018

1 / 17

Introduction

• xi : a variable taking on values in some domain Ai, i = 1, . . . , n
• g(x1, . . . , xn) : a function of x1, . . . , xn

• gi(xi) : the marginal function w.r.t. xi

gi(xi) =
∑

x1∈A1

· · ·
∑

xi−1∈Ai−1

∑
xi+1∈Ai+1

∑
xn∈An

g(x1, . . . , xn)

=
∑
∼xi

g(x1, . . . , xn)

• The sum-product algorithm is a efficient procedure for computing marginal functions that
– a) exploit the way in which the global function factors, and
– b) reuses intermediate values.

• It is a simple way to understand a large number of seemingly different algorithms that have
been developed.

2 / 17

Factor Graphs

• Suppose that g(x1, . . . , xn) factors into a product of several local functions,

g(x1, . . . , xn) =
∏
j∈J

fj(Xj)

where J is a discrete index set, Xj is a subset of {x1, . . . , xn}, and fj(Xj) is a function
having the elements of Xj as arguments.

• A factor graph is a bipartite graph that expresses the structure of the factorization. It has
– a variable node for each variable xi,
– a factor node for each local function fj,
– and an edge between a variable node xi and a factor node fj

if and only if xi is an argument of fj.

Example.

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5)

3 / 17

Computing a Single Marginal Function

Example (continued).

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5)

g1(x1) = fA(x1)

∑
x2

fB(x2)

∑
x3

fC(x1, x2, x3)

∑
x4

fD(x3, x4)

∑
x5

fE(x3, x5)




= fA(x1)
∑
∼x1

fB(x2)fC(x1, x2, x3)

∑
∼x3

fD(x3, x4)

∑
∼x3

fE(x3, x5)


g3(x3) =

∑
∼x3

fA(x1)fB(x2)fC(x1, x2, x3)

∑
∼x3

fD(x3, x4)

∑
∼x3

fE(x3, x5)



4 / 17

Computing a Single Marginal Function

Single-i Sum-Product algorithm.
• Take xi as the root vertex.
• Each leaf node sends a message to its parent.
• Each vertex waits for messages from all of its children before computing the message to be

sent to its parent.
• A variable node simply sends the product of messages received from its children

µx→f =
∏

h∈n(x)\f

µh→x(x)

where n(x) is the set of functions of which x is an argument.
• A factor node f with a parent x forms the product of f with the messages received from its

children, and then operates the summation
∑
−x on the result

µf→x(x) =
∑
∼x

f (X)
∏

y∈n(f)\{x}
µy→f (y)


where X = n(f) is the set of arguments of f .

• gi(xi) is obtained as the product of all messages received at xi.

5 / 17

Computing a Single Marginal Function

Example (continued).

µx4→fD = µx5→fE = 1,

µfD→x3 =
∑
∼x3

fD(x3, x4), µfE→x3 =
∑
∼x3

fE(x3, x5),

µx3→fC =

∑
∼x3

fD(x3, x4)

∑
∼x3

fE(x3, x5)

 ,

µfB→x2 = µx2→fC = fB(x2),

µfC→x1 =
∑
∼x1

fB(x2)fC(x1, x2, x3)

∑
∼x3

fD(x3, x4)

∑
∼x3

fE(x3, x5)

 ,

µfA→x1 = fA(x1),

g1(x1) = fA(x1)
∑
∼x1

fB(x2)fC(x1, x2, x3)

∑
∼x3

fD(x3, x4)

∑
∼x3

fE(x3, x5)

 .

6 / 17

Computing a Single Marginal Function

Example (continued).

µfA→x1 = µx1→fC = fA(x1),

µfB→x2 = µx2→fC = fB(x2),

µfC→x3 =
∑
∼x3

fA(x1)fB(x2)fC(x1, x2, x3),

µx4→fD = µx5→fE = 1,

µfD→x3 =
∑
∼x3

fD(x3, x4), µfE→x3 =
∑
∼x3

fE(x3, x5),

g3(x3) =

∑
∼x3

fA(x1)fB(x2)fC(x1, x2, x3)

∑
∼x3

fD(x3, x4)

∑
∼x3

fE(x3, x5)

 .

7 / 17

Computing All Marginal Functions

Sum-Product algorithm.
• As in the single-i algorithm, message passing is initiated at the leaves.
• Each vertex v remains idle until messages have arrived on all but one of the edges incident

on v.

8 / 17

Example : TrueSkill

• TrueSkill ranking system is a skill based ranking system for Xbox Live developed at
Microsoft Research.

• The purpose is to both identify and track the skills of gamers in order to be able to match
them into competitive matches.

• TrueSkill ranking system only uses the final standings of all teams in a game in order to
update the skill estimates of all gamers playing in this game.

• Ranking systems have been proposed for many sports but possibly the most prominent
ranking system in use today is the Elo system.

9 / 17

Elo System

• In 1959, Arpad Elo developed a statistical rating system for Chess, which was adopted by
the World Chess Federation FIDE in 1970.

• It models the probability of the possible game outcomes as a function of the two players’
skill ratings s1 and s2.

• In a game each player i exhibits performance pi ∼ N (si, β2).
• The probability that player 1 wins is given by

P(p1 > p2|s1, s2) = Φ

(
s1 − s2√

2β

)
.

• Let y = 1 if player 1 wins, y = −1 if player 2 wins and y = 0 if a draw occurs.
• After the game, the skill ratings s1 and s2 are updated by

s1 ← s1 + y∆

s2 ← s2 − y∆

where

∆ = αβ
√
π

(
y + 1

2
− Φ

(
s1 − s2√

2β

))
.

10 / 17

TrueSkill

• Assume an independent normal prior p(s) =
∏n

i=1N (si;µi, σ2
i).

• Each player i exhibits a performance pi ∼ N (pi; si, β2).

• From among a population of n players {1, . . . , n} in a game let k teams compete a match.

• The team assignments are specified by k non-overlapping subsets

Aj ⊂ {1, . . . , n},Ai ∩ Aj = if i 6= j.

• The performance tj of team j is modeled as the sum of the performances of its members

tj =
∑
i∈Aj

pi.

11 / 17

TrueSkill

• The outcome r = (r1, . . . , rk) ∈ {1, . . . , k}k is specified by a rank rj for each team j.

• Disregarding draws, the probability of a game outcome r is modeled as

P(r|t1, . . . , tk) = P(tr(1) > tr(2) > · · · > tr(k)).

• If draws are permitted the wining outcome r(j) < r(j+1) requires tr(j) > tr(j+1) + ε and
the draw outcome r(j) = r(j+1) requires |tr(j) − tr(j+1) | ≤ ε, where ε is a draw margin.

12 / 17

TrueSkill

• Consider a game with 3 teams with
A1 = {1},A2 = {2, 3} and A3 = 4.

• Assume that team 1 is the winner and
that teams 2 and 3 draw, i.e.,
r = (1, 2, 2).

• The factor graph representing the joint
distribution P(s, p, t|r,A) is depicted.

13 / 17

TrueSkill

• The quantities of interest are the posterior distribution P(si|r,A).

• P(si|r,A) is calculated from the joint distribution integrating out the individual
performances {pi} and the team performances {ti},

P(si|r,A) =

∫ ∫
P(s, p, t|r,A)dpdt

14 / 17

Approximate Message Passing

• The message passing is characterized by the following equations:

P(vk) =
∏

f∈n(vk)

µf→vk (vk),

µf→vj (vj) =

∫
f (v)

∏
vi∈n(f)\{vj}

mvi→f (vi)dv∼j,

µvk→f (vk) =
∏

h∈n(vk)\{f}
µh→vk (vk).

• The TrueSkill factor graph is acyclic and the majority of messages can be represented
compactly as 1-dimensional Gaussians.

• However, messages from the comparison factors I(· > ε) or I(| · | ≤ ε) to the
performance differences di are non Gaussian.

• We approximate these messages by approximating the marginal P(di) via moment
matching resulting in a Gaussian P̂(di) with the same mean and variance as P(di).

• Then, we have

µ̂f→di (di) =
P̂(di)

µdi→f (di)
.

15 / 17

Approximate Message Passing

• Since the messages 2 and 5 are approximate, iterate over all messages that are on the
shortest path between any two approximate marginals P̂(di) until the convergence of
marginals.

16 / 17

References

• Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the
sum-product algorithm. IEEE Transactions on information theory, 47(2), 498-519.

• Herbrich, R., Minka, T., & Graepel, T. (2007). TrueSkillTM: a Bayesian skill rating system.
In Advances in neural information processing systems (pp. 569-576).

17 / 17

