Factor Graphs, the Sum-Product Algorithm and TrueSkill™

Kuhwan Jeong !

! Department of Statistics, Seoul National University, South Korea

July, 2018



Introduction

X; : a variable taking on values in some domain A;,i =1,...,n
g(x1,...,x,) :afunction of xp,...,x,

gi(xi) : the marginal function w.r.t. x;
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The sum-product algorithm is a efficient procedure for computing marginal functions that
— a) exploit the way in which the global function factors, and
— b) reuses intermediate values.
It is a simple way to understand a large number of seemingly different algorithms that have
been developed.



Factor Graphs

o Suppose that g(xj, . .., x,) factors into a product of several local functions,
g(xl PRI 7xﬂ) = Hﬁ(Xj)
i€t
where J is a discrete index set, X; is a subset of {xi, ..., x,}, and fj(X;) is a function

having the elements of X; as arguments.
e A factor graph is a bipartite graph that expresses the structure of the factorization. It has
a variable node for each variable x;,
— afactor node for each local function fj,

— and an edge between a variable node x; and a factor node f;
if and only if x; is an argument of f;.

Example.

8(x1, %2, %3, x4, %5) = fa (x1)fp (x2)fc (x1, X2, X3)fp (3, X4 )fE (x3, x5)
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Computing a Single Marginal Function

Example (continued).

8(x1,x2,x3,x4,x5) = fa (x1)f(x2)fc (X1, %2, X3)fD (X3, x4 )fE (X3, X5)

g1(x1) = fa(x1) [ng(n) {ch(xlyxwz) (ZfD()‘BvM)) (sz(XBvXS)) H
o o 7 5
= fG) > {fB(XZ)fC(leXZaXB) (an(xam)) <ZfE(X3sx5)) }
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g(x3) = (Z.fA(/V])fB(XZ)fC(/V]M’ZVVS)) <ZfD(X3aX4)> (Z.fE(Xsws))
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Computing a Single Marginal Function

Single-i Sum-Product algorithm.

Take x; as the root vertex.
Each leaf node sends a message to its parent.

Each vertex waits for messages from all of its children before computing the message to be
sent to its parent.

A variable node simply sends the product of messages received from its children

Hx—f = H Hi—sx (%)
hen(x)\f
where n(x) is the set of functions of which x is an argument.

A factor node f with a parent x forms the product of f with the messages received from its
children, and then operates the summation 3 _ .. on the result

@) =YX [ s
~x yen(f)\{x}

where X = n(f) is the set of arguments of f.

gi (x,-) is obtained as the product of all messages received at x;.



Computing a Single Marginal Function

Example (continued).

(1) Pay—fp = Hus—fp = 1,
fa Jc Wy = D I3, %4), gy = O fe(x3,%5),
(@) () o o

Hes—fc (ZfD(x.%M)) (Z.fE()@JS)) ;
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Rg—xy = Pay—fec =TB(x2),

Weox = {fs(xz )fe(x1,x2,x3) (an xs,x4)> <ZfE(x37x5)) } )
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gi(x) = falx1) D { (x2)fc(x1, %2, x3) (qu(xs,m)) (ZfE(x3,XS)) } .
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Computing a Single Marginal Function

Example (continued).
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Computing All Marginal Functions

Sum-Product algorithm.
e As in the single-i algorithm, message passing is initiated at the leaves.

e Each vertex v remains idle until messages have arrived on all but one of the edges incident
onv.




Example : TrueSkill

TrueSkill ranking system is a skill based ranking system for Xbox Live developed at
Microsoft Research.

The purpose is to both identify and track the skills of gamers in order to be able to match
them into competitive matches.

TrueSkill ranking system only uses the final standings of all teams in a game in order to
update the skill estimates of all gamers playing in this game.

Ranking systems have been proposed for many sports but possibly the most prominent
ranking system in use today is the Elo system.
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Elo System

In 1959, Arpad Elo developed a statistical rating system for Chess, which was adopted by
the World Chess Federation FIDE in 1970.

It models the probability of the possible game outcomes as a function of the two players’
skill ratings s1 and s;.

In a game each player i exhibits performance p; ~ N (s;, 52).
The probability that player 1 wins is given by

P(p1 > pals1,82) = cp(sl\[—z;z)_

Lety = 1if player 1 wins, y = —1 if player 2 wins and y = 0 if a draw occurs.

After the game, the skill ratings s; and s are updated by

s1 < 851+ YA
57 < sp — YA

o (5 -0(25)-

where




TrueSkill

Assume an independent normal prior p(s) = []/_; N (si; pi, 07).
Each player i exhibits a performance p; ~ N (pi; si, 82).
From among a population of n players {1, ...,n} in a game let k teams compete a match.

The team assignments are specified by k£ non-overlapping subsets
A CA{l,...,n},AiNA; = ifi#}j.

The performance ¢ of team j is modeled as the sum of the performances of its members

1= Zp,’.

i€A;
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TrueSkill

e The outcome r = (ry,...,re) € {1,... ,k}k is specified by a rank r; for each team j.

e Disregarding draws, the probability of a game outcome r is modeled as
P(rlty, .. ti) = Plirgy > trgy > - > gy )-

o If draws are permitted the wining outcome r(;) < r(;1 ) requires Trgy > trgpyy T € and
the draw outcome r(jy = r(j4.1) requires \tr(l.) —lrgyy | < €, where € is a draw margin.
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TrueSkill

° Consider a game Witl’l 3 teams With N(spip.0f) N(sa:pt2.03) Nsy: pg.03) N(sqipa.0?)
A; ={1},A, = {2,3} and A3 = 4.

e Assume that team 1 is the winner and
that teams 2 and 3 draw, i.e.,
r=(1,2,2).

e The factor graph representing the joint
distribution P(s, p, t|r, A) is depicted.

(dy > =) (ldsf <)
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TrueSkill

o The quantities of interest are the posterior distribution P(s;|r,A).

e P(si|r,A) is calculated from the joint distribution integrating out the individual
performances {p;} and the team performances {z;},

Plslea) = [ [ Pls,ptir A)apat
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Approximate Message Passing

o The message passing is characterized by the following equations:

Pvi) = [ mr—v0),
fen(ve)

b ) =[50 TT myidave,
vien(H\{vj}

IT im0
hen(\ {1}

.L"vk—>f(v1<)

e The TrueSkill factor graph is acyclic and the majority of messages can be represented
compactly as 1-dimensional Gaussians.

o However, messages from the comparison factors I(- > €) or I(| - | < €) to the
performance differences d; are non Gaussian.

o We approximate these messages by approximating the marginal P(d;) via moment
matching resulting in a Gaussian P(d;) with the same mean and variance as P(d;).

e Then, we have .
P(d;)

ﬂ dl(d- =
7, () B,y (di)



Approximate Message Passing
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o Since the messages 2 and 5 are approximate, iterate over all messages that are on the
shortest path between any two approximate marginals P(d;) until the convergence of
marginals.

16/17



References

e Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the
sum-product algorithm. IEEE Transactions on information theory, 47(2), 498-519.

e Herbrich, R., Minka, T., & Graepel, T. (2007). TrueSkill™: a Bayesian skill rating system.
In Advances in neural information processing systems (pp. 569-576).

17/17



