Factor Graphs, the Sum-Product Algorithm and TrueSkill ${ }^{\mathrm{TM}}$

Kuhwan Jeong ${ }^{1}$
${ }^{1}$ Department of Statistics, Seoul National University, South Korea

July, 2018

Introduction

- x_{i} : a variable taking on values in some domain $A_{i}, i=1, \ldots, n$
- $g\left(x_{1}, \ldots, x_{n}\right)$: a function of x_{1}, \ldots, x_{n}
- $g_{i}\left(x_{i}\right)$: the marginal function w.r.t. x_{i}

$$
\begin{aligned}
g_{i}\left(x_{i}\right) & =\sum_{x_{1} \in A_{1}} \ldots \sum_{x_{i-1} \in A_{i-1}} \sum_{x_{i+1} \in A_{i+1}} \sum_{x_{n} \in A_{n}} g\left(x_{1}, \ldots, x_{n}\right) \\
& =\sum_{\sim x_{i}} g\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

- The sum-product algorithm is a efficient procedure for computing marginal functions that
- a) exploit the way in which the global function factors, and
- b) reuses intermediate values.
- It is a simple way to understand a large number of seemingly different algorithms that have been developed.

Factor Graphs

- Suppose that $g\left(x_{1}, \ldots, x_{n}\right)$ factors into a product of several local functions,

$$
g\left(x_{1}, \ldots, x_{n}\right)=\prod_{j \in J} f_{j}\left(X_{j}\right)
$$

where J is a discrete index set, X_{j} is a subset of $\left\{x_{1}, \ldots, x_{n}\right\}$, and $f_{j}\left(X_{j}\right)$ is a function having the elements of X_{j} as arguments.

- A factor graph is a bipartite graph that expresses the structure of the factorization. It has
- a variable node for each variable x_{i},
- a factor node for each local function f_{j},
- and an edge between a variable node x_{i} and a factor node f_{j} if and only if x_{i} is an argument of f_{j}.

Example.

$$
g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) f_{D}\left(x_{3}, x_{4}\right) f_{E}\left(x_{3}, x_{5}\right)
$$

Computing a Single Marginal Function

Example (continued).

$$
\begin{gathered}
g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right) f_{D}\left(x_{3}, x_{4}\right) f_{E}\left(x_{3}, x_{5}\right) \\
g_{1}\left(x_{1}\right)=f_{A}\left(x_{1}\right)\left[\sum_{x_{2}} f_{B}\left(x_{2}\right)\left\{\sum_{x_{3}} f_{C}\left(x_{1}, x_{2}, x_{3}\right)\left(\sum_{x_{4}} f_{D}\left(x_{3}, x_{4}\right)\right)\left(\sum_{x_{5}} f_{E}\left(x_{3}, x_{5}\right)\right)\right\}\right] \\
=f_{A}\left(x_{1}\right) \sum_{\sim x_{1}}\left\{f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right)\left(\sum_{\sim x_{3}} f_{D}\left(x_{3}, x_{4}\right)\right)\left(\sum_{\sim x_{3}} f_{E}\left(x_{3}, x_{5}\right)\right)\right\} \\
g_{3}\left(x_{3}\right)=\left(\sum_{\sim x_{3}} f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right)\right)\left(\sum_{\sim x_{3}} f_{D}\left(x_{3}, x_{4}\right)\right)\left(\sum_{\sim x_{3}} f_{E}\left(x_{3}, x_{5}\right)\right)
\end{gathered}
$$

Computing a Single Marginal Function

Single-i Sum-Product algorithm.

- Take x_{i} as the root vertex.
- Each leaf node sends a message to its parent.
- Each vertex waits for messages from all of its children before computing the message to be sent to its parent.
- A variable node simply sends the product of messages received from its children

$$
\mu_{x \rightarrow f}=\prod_{h \in n(x) \backslash f} \mu_{h \rightarrow x}(x)
$$

where $n(x)$ is the set of functions of which x is an argument.

- A factor node f with a parent x forms the product of f with the messages received from its children, and then operates the summation \sum_{-x} on the result

$$
\mu_{f \rightarrow x}(x)=\sum_{\sim x}\left(f(X) \prod_{y \in n(f) \backslash\{x\}} \mu_{y \rightarrow f}(y)\right)
$$

where $X=n(f)$ is the set of arguments of f.

- $g_{i}\left(x_{i}\right)$ is obtained as the product of all messages received at x_{i}.

Computing a Single Marginal Function

Example (continued).

$$
\begin{aligned}
& \mu_{x_{4} \rightarrow f_{D}}=\mu_{x_{5} \rightarrow f_{E}}=1 \\
& \mu_{f_{D} \rightarrow x_{3}}=\sum_{\sim x_{3}} f_{D}\left(x_{3}, x_{4}\right), \mu_{f_{E} \rightarrow x_{3}}=\sum_{\sim x_{3}} f_{E}\left(x_{3}, x_{5}\right)
\end{aligned}
$$

$$
\mu_{x_{3} \rightarrow f_{C}}=\left(\sum_{\sim x_{3}} f_{D}\left(x_{3}, x_{4}\right)\right)\left(\sum_{\sim x_{3}} f_{E}\left(x_{3}, x_{5}\right)\right)
$$

$$
\mu_{f_{B} \rightarrow x_{2}}=\mu_{x_{2} \rightarrow f_{C}}=f_{B}\left(x_{2}\right),
$$

$$
\mu_{f_{C} \rightarrow x_{1}}=\sum_{\sim x_{1}}\left\{f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right)\left(\sum_{\sim x_{3}} f_{D}\left(x_{3}, x_{4}\right)\right)\left(\sum_{\sim x_{3}} f_{E}\left(x_{3}, x_{5}\right)\right)\right\}
$$

$$
\mu_{f_{A} \rightarrow x_{1}}=f_{A}\left(x_{1}\right),
$$

$$
g_{1}\left(x_{1}\right)=f_{A}\left(x_{1}\right) \sum_{\sim x_{1}}\left\{f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right)\left(\sum_{\sim x_{3}} f_{D}\left(x_{3}, x_{4}\right)\right)\left(\sum_{\sim x_{3}} f_{E}\left(x_{3}, x_{5}\right)\right)\right\} .
$$

Computing a Single Marginal Function

Example (continued).

$$
\begin{aligned}
\mu_{f_{A} \rightarrow x_{1}} & =\mu_{x_{1} \rightarrow f_{C}}=f_{A}\left(x_{1}\right), \\
\mu_{f_{B} \rightarrow x_{2}} & =\mu_{x_{2} \rightarrow f_{C}}=f_{B}\left(x_{2}\right), \\
\mu_{f_{C} \rightarrow x_{3}} & =\sum_{\sim x_{3}} f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right), \\
\mu_{x_{4} \rightarrow f D} & =\mu_{x_{5} \rightarrow f_{E}}=1 \\
\mu_{f_{D} \rightarrow x_{3}} & =\sum_{\sim x_{3}} f_{D}\left(x_{3}, x_{4}\right), \mu_{f_{E} \rightarrow x_{3}}=\sum_{\sim x_{3}} f_{E}\left(x_{3}, x_{5}\right),
\end{aligned}
$$

$$
g_{3}\left(x_{3}\right)=\left(\sum_{\sim x_{3}} f_{A}\left(x_{1}\right) f_{B}\left(x_{2}\right) f_{C}\left(x_{1}, x_{2}, x_{3}\right)\right)\left(\sum_{\sim x_{3}} f_{D}\left(x_{3}, x_{4}\right)\right)\left(\sum_{\sim x_{3}} f_{E}\left(x_{3}, x_{5}\right)\right) .
$$

Computing All Marginal Functions

Sum-Product algorithm.

- As in the single-i algorithm, message passing is initiated at the leaves.
- Each vertex v remains idle until messages have arrived on all but one of the edges incident on v.

Example : TrueSkill

- TrueSkill ranking system is a skill based ranking system for Xbox Live developed at Microsoft Research.
- The purpose is to both identify and track the skills of gamers in order to be able to match them into competitive matches.
- TrueSkill ranking system only uses the final standings of all teams in a game in order to update the skill estimates of all gamers playing in this game.
- Ranking systems have been proposed for many sports but possibly the most prominent ranking system in use today is the Elo system.

Elo System

- In 1959, Arpad Elo developed a statistical rating system for Chess, which was adopted by the World Chess Federation FIDE in 1970.
- It models the probability of the possible game outcomes as a function of the two players' skill ratings s_{1} and s_{2}.
- In a game each player i exhibits performance $p_{i} \sim \mathcal{N}\left(s_{i}, \beta^{2}\right)$.
- The probability that player 1 wins is given by

$$
P\left(p_{1}>p_{2} \mid s_{1}, s_{2}\right)=\Phi\left(\frac{s_{1}-s_{2}}{\sqrt{2} \beta}\right)
$$

- Let $y=1$ if player 1 wins, $y=-1$ if player 2 wins and $y=0$ if a draw occurs.
- After the game, the skill ratings s_{1} and s_{2} are updated by

$$
\begin{aligned}
& s_{1} \leftarrow s_{1}+y \Delta \\
& s_{2} \leftarrow s_{2}-y \Delta
\end{aligned}
$$

where

$$
\Delta=\alpha \beta \sqrt{\pi}\left(\frac{y+1}{2}-\Phi\left(\frac{s_{1}-s_{2}}{\sqrt{2} \beta}\right)\right) .
$$

TrueSkill

- Assume an independent normal prior $p(s)=\prod_{i=1}^{n} \mathcal{N}\left(s_{i} ; \mu_{i}, \sigma_{i}^{2}\right)$.
- Each player i exhibits a performance $p_{i} \sim \mathcal{N}\left(p_{i} ; s_{i}, \beta^{2}\right)$.
- From among a population of n players $\{1, \ldots, n\}$ in a game let k teams compete a match.
- The team assignments are specified by k non-overlapping subsets

$$
A_{j} \subset\{1, \ldots, n\}, A_{i} \cap A_{j}=\text { if } i \neq j
$$

- The performance t_{j} of team j is modeled as the sum of the performances of its members

$$
t_{j}=\sum_{i \in A_{j}} p_{i}
$$

TrueSkill

- The outcome $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right) \in\{1, \ldots, k\}^{k}$ is specified by a rank r_{j} for each team j.
- Disregarding draws, the probability of a game outcome r is modeled as

$$
P\left(\mathbf{r} \mid t_{1}, \ldots, t_{k}\right)=P\left(t_{r_{(1)}}>t_{r_{(2)}}>\cdots>t_{r_{(k)}}\right) .
$$

- If draws are permitted the wining outcome $r_{(j)}<r_{(j+1)}$ requires $t_{r_{(j)}}>t_{r_{(j+1)}}+\epsilon$ and the draw outcome $r_{(j)}=r_{(j+1)}$ requires $\left|t_{r_{(j)}}-t_{r_{(j+1)}}\right| \leq \epsilon$, where ϵ is a draw margin.

TrueSkill

- Consider a game with 3 teams with $A_{1}=\{1\}, A_{2}=\{2,3\}$ and $A_{3}=4$.
- Assume that team 1 is the winner and that teams 2 and 3 draw, i.e., $\mathbf{r}=(1,2,2)$.
- The factor graph representing the joint distribution $P(\mathbf{s}, \mathbf{p}, \mathbf{t} \mid \mathbf{r}, A)$ is depicted.

TrueSkill

- The quantities of interest are the posterior distribution $P\left(s_{i} \mid \mathbf{r}, A\right)$.
- $P\left(s_{i} \mid \mathbf{r}, A\right)$ is calculated from the joint distribution integrating out the individual performances $\left\{p_{i}\right\}$ and the team performances $\left\{t_{i}\right\}$,

$$
P\left(s_{i} \mid \mathbf{r}, A\right)=\iint P(\mathbf{s}, \mathbf{p}, \mathbf{t} \mid \mathbf{r}, A) d \mathbf{p} d \mathbf{t}
$$

Approximate Message Passing

- The message passing is characterized by the following equations:

$$
\begin{aligned}
P\left(v_{k}\right) & =\prod_{f \in n\left(v_{k}\right)} \mu_{f \rightarrow v_{k}}\left(v_{k}\right) \\
\mu_{f \rightarrow v_{j}}\left(v_{j}\right) & =\int f(\mathbf{v}) \prod_{v_{i} \in n(f) \backslash\left\{v_{j}\right\}} m_{v_{i} \rightarrow f}\left(v_{i}\right) d \mathbf{v}_{\sim j}, \\
\mu_{v_{k} \rightarrow f}\left(v_{k}\right) & =\prod_{h \in n\left(v_{k}\right) \backslash\{f\}} \mu_{h \rightarrow v_{k}}\left(v_{k}\right) .
\end{aligned}
$$

- The TrueSkill factor graph is acyclic and the majority of messages can be represented compactly as 1-dimensional Gaussians.
- However, messages from the comparison factors $I(\cdot>\epsilon)$ or $I(|\cdot| \leq \epsilon)$ to the performance differences d_{i} are non Gaussian.
- We approximate these messages by approximating the marginal $P\left(d_{i}\right)$ via moment matching resulting in a Gaussian $\hat{P}\left(d_{i}\right)$ with the same mean and variance as $P\left(d_{i}\right)$.
- Then, we have

$$
\hat{\mu}_{f \rightarrow d_{i}}\left(d_{i}\right)=\frac{\hat{P}\left(d_{i}\right)}{\mu_{d_{i} \rightarrow f}\left(d_{i}\right)}
$$

Approximate Message Passing

- Since the messages 2 and 5 are approximate, iterate over all messages that are on the shortest path between any two approximate marginals $\hat{P}\left(d_{i}\right)$ until the convergence of marginals.

References

- Kschischang, F. R., Frey, B. J., \& Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on information theory, 47(2), 498-519.
- Herbrich, R., Minka, T., \& Graepel, T. (2007). TrueSkill ${ }^{\text {TM }}$: a Bayesian skill rating system. In Advances in neural information processing systems (pp. 569-576).

