
Online Learning to Rank in Stochastic Click Models
Zoghi, M., Tunys, T., Ghavamzadeh, M., Kveton, B., Szepesvari, C., & Wen, Z.

ICML 2017

Kuhwan Jeong 1

1Department of Statistics, Seoul National University, South Korea

July, 2018

1 / 11



Introduction

• Click model is a probabilistic model of how users examine and click on a list of
documents.

• Click models is designed to explain the so-called position bias in click data.

• Goal of learning to rank (LTR) is to provide a list of K documents out of L that
maximizes the number of clicks made by users.

• In this paper, an online LTR algorithm, which can be used in a broad class of
click models, is proposed.

2 / 11



Click Models

• All documents (items) are represented by D = {1, . . . , L}.

• User is presented an ordered list of K documents out of L, denoted by
R = (d1, . . . , dK).

• Click models are parametrized by attraction function α, where α(d) is the
probability that item d is attractive, and examination function χ, where
χ(α,R, k) is the probability that the k-th item inR is examined.

• The probability of clicking k-th item inR is χ(α,R, k)α(dk).

• The expected number of click on listR is

r(R) =
K∑

k=1

χ(α,R, k)α(dk).

• Without loss of generality, let α(1) ≥ · · · ≥ α(L).

3 / 11



Click Models - (1) Position-Based Model

• Position-based model (PBM) assumes the examination function depends only
on the position

χ(α,R, k) = χ(k).

• The expected number of clicks onR is

r(R) =
K∑

k=1

χ(k)α(dk).

• Under the assumption χ(1) ≥ · · · ≥ χ(K), r(R) is maximized by the list of K
most attractive items

R∗ = (1, . . . ,K)

where the k-th most attractive item is placed at position k.

4 / 11



Click Models - (2) Cascade Model

• In the cascade model (CM), the user scans a list of itemsR = (d1, . . . , dK)
from d1 to dK .

• If item dk is attractive, the user clicks on it and does not examine the remaining
items.

• If item dk is not attractive, the user examines item dk+1.

• The examine function χ becomes

χ(α,R, k) =
k−1∏
i=1

(1− α(di)).

• The expected number of clicks onR is

r(R) =
K∑

k=1

χ(k)α(dk) = 1−
K∏

k=1

(1− α(dk)).

• Any permutation of {1, . . . ,K} is optimal in the CM.

5 / 11



Online Learning to Rank

Algorithm 1 BatchRank
1: // Initialization
2: for b = 1, . . . , 2K do
3: for l = 0, . . . , T − 1 do
4: for all d ∈ D do
5: cb,l(d)← 0, nb,l(d)← 0
6: end for
7: end for
8: end for
9: B ← {1}, bmax ← 1,

10: I1 ← (1,K), B1,0 ← D, l1 ← 0
11: // BatchRank
12: for t = 1, . . . , T do
13: for all b ∈ B do
14: DisplayBatch(b, t)
15: end for
16: for all b ∈ B do
17: CollectClicks(b, t)
18: end for
19: for all b ∈ B do
20: UpdateBatch(b, t)
21: end for
22: end for

• Two key ideas are
1 randomizing the placement of

items to avoid position biases and
2 recursively dividing the batches of

items into more and less attractive
items.

• B : the set indices of batches
• Bb,l : the set of items in batch b at

stage l

• Ib : the range of positions of items
in batch b

6 / 11



Online Learning to Rank

Algorithm 2 DisplayBatch
1: l← lb
2: Let d1, . . . , d|Bb,l| be a permutation of items in Bb,l such that nb,l(d1) ≤ · · · ≤ nb,l(d|Bb,l|).
3: Let π be a random permutation of {Ib(1), . . . , Ib(2)}.
4: for k = Ib(1), . . . , Ib(2) do
5: dt

k ← dπ(k−Ib(1)+1)
6: end for

Algorithm 3 CollectClicks
1: l← lb, nmin ← mind∈Bb,l nb,l(d)
2: for k = Ib(1), . . . , Ib(2) do
3: if nb,l(dt

k) = nmin then
4: cb,l(dt

k)← cb,l(dt
k) + ct(k)

5: nb,l(dt
k)← nb,l(dt

k) + 1
6: end if
7: end for

7 / 11



Online Learning to Rank

Algorithm 4 UpdateBatch
1: l← lb, len(b) = Ib(2)− Ib(1) + 1
2: if mind∈Bb,l nb,l(d) = nl then
3: for all d ∈ Bb,l do
4: Compute Ub,l(d) and Lb,l(d).
5: end for
6: Let d1, . . . , d|Bb,l| be a permutation of items in Bb,l such that Lb,l(d1) ≥ · · · ≥ Lb,l(d|Bb,l|).
7: // Find a split
8: s← 0
9: for k = 1, . . . , len(b)− 1 do

10: B+
k ← {d1, . . . , dk}, B−k ← Bb,l \ B+

k
11: if Lb,l(dk) > max

d∈B−k
Ub,l(d) then

12: s← k
13: end if
14: end for
15: if s = 0, |Bb,l| > len(b) then
16: Bb,l+1 ← {d ∈ Bb,l : Ub,l(d) ≥ Lb,l(dlen(b))}
17: lb ← lb + 1
18: else if s > 0 then
19: // Split
20: B ← {bmax + 1, bmax + 2} \ {b}, bmax ← bmax + 2
21: Ibmax+1 ← (Ib(1), Ib(1) + s− 1), Bbmax+1,0 ← B+

s , lbmax+1 ← 0
22: Ibmax+2 ← (Ib(1) + s, Ib(2)), Bbmax+2,0 ← B−s , lbmax+2 ← 0
23: end if
24: end if

8 / 11



Online Learning to Rank

• Any item d ∈ Bb,l in stage l is explored nl times where

nl = d22l+4 log Te.

• At the end of the stage, the probability of clicking on item d is estimated as

ĉb,l(d) = cb,l(d)/nl.

• KL-UCB upper and lower confidence bounds are

Ub,l(d) ← argmax
q∈[̂cb,l(d),1]

{
DKL(ĉb,l(d)||q) ≤

log T + 2 log log T
nl

}
,

Lb,l(d) ← argmin
q∈[0,̂cb,l(d)]

{
DKL(ĉb,l(d)||q) ≤

log T + 2 log log T
nl

}
,

where DKL(p||q) denotes the Kullback-Leibler divergence between Bernoulli
random variables with means p and q.

9 / 11



Experiments

• Yandex dataset
– A dataset of 35M search sessions, each of which may contain multiple search

queries
– Each query is associated with displayed documents at positions 1 to 10 and their

clicks.

• 60 frequent search queries are selected.
• For each query, CM and PBM are learned using PyClick.
• For each query, the goal is to rerank L = 10 most attrative items with the

objective of maximizing the expected number of clicks at the first K = 5
positions.

10 / 11



Experiments

11 / 11


