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Introduction

Click model is a probabilistic model of how users examine and click on a list of
documents.

Click models is designed to explain the so-called position bias in click data.

Goal of learning to rank (LTR) is to provide a list of K documents out of L that
maximizes the number of clicks made by users.

In this paper, an online LTR algorithm, which can be used in a broad class of
click models, is proposed.



Click Models

All documents (items) are represented by D = {1,...,L}.

User is presented an ordered list of K documents out of L, denoted by
R = (d,...,dk).

Click models are parametrized by attraction function o, where a(d) is the
probability that item d is attractive, and examination function x, where
x(a, R, k) is the probability that the k-th item in R is examined.

The probability of clicking k-th item in R is x(c, R, k)ce(dx).
The expected number of click on list R is
K
r(R) = x(a, R, k)a(dy).
k=1

Without loss of generality, let a(1) > -+ > «a(L).



Click Models - (1) Position-Based Model

e Position-based model (PBM) assumes the examination function depends only
on the position

X(a7 R, k) = X(k)

o The expected number of clicks on R is

H(R) = x(k)o(d).

e Under the assumption x (1) > --- > x(K), r(R) is maximized by the list of K
most attractive items
R =(1,...,K)

where the k-th most attractive item is placed at position k.



Click Models - (2) Cascade Model

In the cascade model (CM), the user scans a list of items R = (di, . . ., dk)
from d; to dk.

If item dy is attractive, the user clicks on it and does not examine the remaining
items.

If item dj is not attractive, the user examines item di 1.

The examine function y becomes

k—1

x(a, R, k) = [[(1 = a(dy)).

i=1
The expected number of clicks on R is

K K

r(R) =3 xk)a(d) = 1 - [[(1 - a(d)).

k=1 k=1

Any permutation of {1, ..., K} is optimal in the CM.



Online Learning to Rank

Algorithm 1 BatchRank e Two key ideas are
1: // Initialization @ randomizing the placement of
2: forb=1,...,2Kdo items to avoid position biases and
33 forl=0,...,7T— ldo @® recursively dividing the batches of
4 foralld € D do items into more and less attractive
5: bel(d) < 0, Vlb,I(d) +~—0 items
6: end for !
7: end for e J3: the set indices of batches
8: end for
9: B+ {1}, bumax 1, e By : the set of items in batch b at
10: I (I,K), B],U < D, l] ~—0 Stagel
11: // BatchRank
12: fort=1,...,Tdo e [, : the range of positions of items
13: forallb € Bdo :
14: DisplayBatch(b, 1) in batch b
15: end for
16: forallb € Bdo
17: CollectClicks(b, 1)
18: end for
19: forallb € Bdo
20: UpdateBatch(b, 1)
21: end for

22: end for
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Online Learning to Rank

Algorithm 2 DisplayBatch

1
2
3
4:
5.
6

sl
: Letdy, ..., dp, | be apermutation of items in By, such that np(dy) <--- < n,,,l(d“?b l|)'
: Let 7 be a random permutation of {I,(1),...,,(2)}.
fork = I,(1),...,1,(2) do
di = dreor, (1) 41)
: end for

Algorithm 3 CollectClicks

1:
2:
3:

4
5

6:
7

[+ l;,, Nmin < mindegb’l th(d)
fork =1,(1),...,1,(2) do
ifn;,ﬁ,(d/") = Nmip then
cp1(dy) = cvu(dy) + e (k)
np,1(dy) <= np,i(di) + 1
end if
end for




Online Learning to Rank

Algorithm 4 UpdateBatch

1: 1 1y, len(b) = I,(2) — I,(1) + 1
2: ifmindggb ! nb,,(d) =n then

23:

SO 09X kW

foralld € B, ; do
Compute Up,;(d) and Ly, ;(d).

end for

Letd,, ... ,d‘,,h’[‘ be a permutation of items in B, ; such that Ly, ;(d) > - -+ > Lb=l(d\317,1\ ).
// Find a split

s+ 0

fork =1,...,len(b) — 1 do
B « {d,....d}, By + By, \ B
if Ly, (dy) > max, _.— Up,i(d) then
k

sk
end if
end for
if s =0, |By,/| > len(b) then
Bp,i41 < {d € By, : Up(d) > Lb,l(dleu(h))}
L < I, +1
else if s > 0 then
1/ Split
B < {bmax + 1, bmax + 2} \ {b}, bPmax < bmax + 2
T +1 4= (Is(1), 1p(1) +5 = 1), But1,0 = B, Doy < 0
I +2 4= (Ib(1) + 5, 15(2)), Bogyax+2,0 <= By, lomgy+2 <= 0
end if

24: end if




Online Learning to Rank

e Any item d € By in stage [ is explored n; times where
m = [2""1ogT].
o At the end of the stage, the probability of clicking on item d is estimated as

pa(d) = cpa(d) /m.

e KL-UCB upper and lower confidence bounds are

Uby](d) < argmax {DKL(Eb,[(d)Hq) <

log T + 2]oglogT}
9€ep,1(d),1] 7

n

L;,J(d) < argrnin {DKL(E’;,J(d)Hq) <

log T + 210g10gT}
4€[0.2,1(@)] ’

nm

where Dk (p||q) denotes the Kullback-Leibler divergence between Bernoulli
random variables with means p and g.
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Experiments

Yandex dataset

— A dataset of 35M search sessions, each of which may contain multiple search
queries

— Each query is associated with displayed documents at positions 1 to 10 and their
clicks.

60 frequent search queries are selected.
For each query, CM and PBM are learned using PyClick.

For each query, the goal is to rerank L = 10 most attrative items with the
objective of maximizing the expected number of clicks at the first K = 5
positions.
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Figure 2. The comparison of BatchRank (red), CascadeKL-UCB
(blue), and RankedExp3 (gray) in the CM and PBM. In the top
plots, we report the per-step regret as a function of time T, aver-
aged over 60 queries and 10 runs per query. In the bottom plots,
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we show the distribution of the regret at T' = 10M.
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