Online Learning to Rank in Stochastic Click Models

Zoghi, M., Tunys, T., Ghavamzadeh, M., Kveton, B., Szepesvari, C., & Wen, Z. *ICML* 2017

Kuhwan Jeong 1

¹Department of Statistics, Seoul National University, South Korea

July, 2018

Introduction

- Click model is a probabilistic model of how users examine and click on a list of documents.
- Click models is designed to explain the so-called position bias in click data.
- Goal of learning to rank (LTR) is to provide a list of K documents out of L that
 maximizes the number of clicks made by users.
- In this paper, an online LTR algorithm, which can be used in a broad class of click models, is proposed.

Click Models

- All documents (items) are represented by $\mathcal{D} = \{1, \dots, L\}$.
- User is presented an ordered list of K documents out of L, denoted by $\mathcal{R} = (d_1, \dots, d_K)$.
- Click models are parametrized by *attraction function* α , where $\alpha(d)$ is the probability that item d is attractive, and *examination function* χ , where $\chi(\alpha, \mathcal{R}, k)$ is the probability that the k-th item in \mathcal{R} is examined.
- The probability of clicking k-th item in \mathcal{R} is $\chi(\alpha, \mathcal{R}, k)\alpha(d_k)$.
- The expected number of click on list R is

$$r(\mathcal{R}) = \sum_{k=1}^{K} \chi(\alpha, \mathcal{R}, k) \alpha(d_k).$$

• Without loss of generality, let $\alpha(1) \ge \cdots \ge \alpha(L)$.

Click Models - (1) Position-Based Model

 Position-based model (PBM) assumes the examination function depends only on the position

$$\chi(\alpha, \mathcal{R}, k) = \chi(k).$$

• The expected number of clicks on \mathcal{R} is

$$r(\mathcal{R}) = \sum_{k=1}^{K} \chi(k) \alpha(d_k).$$

• Under the assumption $\chi(1) \ge \cdots \ge \chi(K)$, $r(\mathcal{R})$ is maximized by the list of K most attractive items

$$\mathcal{R}^* = (1, \ldots, K)$$

where the k-th most attractive item is placed at position k.

Click Models - (2) Cascade Model

- In the cascade model (CM), the user scans a list of items $\mathcal{R} = (d_1, \dots, d_K)$ from d_1 to d_K .
- If item d_k is attractive, the user clicks on it and does not examine the remaining items.
- If item d_k is not attractive, the user *examines* item d_{k+1} .
- The examine function χ becomes

$$\chi(\alpha, \mathcal{R}, k) = \prod_{i=1}^{k-1} (1 - \alpha(d_i)).$$

• The expected number of clicks on \mathcal{R} is

$$r(\mathcal{R}) = \sum_{k=1}^{K} \chi(k)\alpha(d_k) = 1 - \prod_{k=1}^{K} (1 - \alpha(d_k)).$$

• Any permutation of $\{1, ..., K\}$ is optimal in the CM.

Algorithm 1 BatchRank

```
1: // Initialization
 2: for b = 1, ..., 2K do
         for l = 0, ..., T - 1 do
             for all d \in \mathcal{D} do
 4:
                 c_{h,l}(d) \leftarrow 0, n_{h,l}(d) \leftarrow 0
 5:
 6:
             end for
 7.
         end for
 8: end for
 9: \mathcal{B} \leftarrow \{1\}, b_{\text{max}} \leftarrow 1,
10: I_1 \leftarrow (1, K), B_{1,0} \leftarrow \mathcal{D}, l_1 \leftarrow 0
11: // BatchRank
12: for t = 1, ..., T do
13.
         for all b \in \mathcal{B} do
14:
              DisplayBatch(b, t)
15.
         end for
16.
         for all b \in \mathcal{B} do
17:
              CollectClicks(b, t)
18.
         end for
         for all b \in \mathcal{B} do
19:
20:
              UpdateBatch(b, t)
21.
         end for
22: end for
```

- Two key ideas are
 - randomizing the placement of items to avoid position biases and
 - recursively dividing the batches of items into more and less attractive items
- B: the set indices of batches
- B_{b,l}: the set of items in batch b at stage l
- *I_b* : the range of positions of items in batch *b*

Algorithm 2 DisplayBatch

```
1: l \leftarrow l_b

2: Let d_1, \dots, d_{|B_b, l|} be a permutation of items in B_{b, l} such that n_{b, l}(d_1) \leq \dots \leq n_{b, l}(d_{|B_b, l|}).

3: Let \pi be a random permutation of \{I_b(1), \dots, I_b(2)\}.

4: for k = I_b(1), \dots, I_b(2) do

5: d_k^t \leftarrow d_{\pi(k - l_b(1) + 1)}

6: end for
```

Algorithm 3 CollectClicks

7: end for

Algorithm 4 UpdateBatch

```
1: l \leftarrow l_b, len(b) = I_b(2) - I_b(1) + 1
 2: if \min_{d \in B_{b,l}} n_{b,l}(d) = n_l then
           for all d \in B_{b,l} do
 3:
               Compute U_{b,l}(d) and L_{b,l}(d).
 4:
 5:
           end for
           Let d_1, \ldots, d_{|B_{b,l}|} be a permutation of items in B_{b,l} such that L_{b,l}(d_1) \ge \cdots \ge L_{b,l}(d_{|B_{b,l}|}).
 7:
          // Find a split
 8:
           s \leftarrow 0
 9:
           for k = 1, ..., len(b) - 1 do
               B_{\iota}^{+} \leftarrow \{d_1,\ldots,d_k\}, B_{\iota}^{-} \leftarrow B_{b,l} \setminus B_{\iota}^{+}
10:
               \inf L_{b,l}(d_k) > \max_{d \in B} \ddot{U}_{b,l}(d) then
11:
12.
                    s \leftarrow k
                end if
13.
14:
           end for
15.
           if s = 0, |B_{b,l}| > \text{len}(b) then
                B_{h,l+1} \leftarrow \{d \in B_{h,l} : U_{h,l}(d) > L_{h,l}(d_{len}(h))\}
16:
                l_b \leftarrow l_b + 1
17:
18:
           else if s > 0 then
               // Split
19:
                \mathcal{B} \leftarrow \{b_{\text{max}} + 1, b_{\text{max}} + 2\} \setminus \{b\}, b_{\text{max}} \leftarrow b_{\text{max}} + 2\}
20:
                I_{b_{\max}+1} \leftarrow (I_b(1), I_b(1) + s - 1), B_{b_{\max}+1,0} \leftarrow B_s^+, l_{b_{\max}+1} \leftarrow 0
21:
               I_{b_{\max}+2} \leftarrow (I_b(1) + s, I_b(2)), B_{b_{\max}+2,0} \leftarrow B_s^-, I_{b_{\max}+2} \leftarrow 0
22:
23:
           end if
24: end if
```

• Any item $d \in B_{b,l}$ in stage l is explored n_l times where

$$n_l = \lceil 2^{2l+4} \log T \rceil.$$

• At the end of the stage, the probability of clicking on item d is estimated as

$$\hat{c}_{b,l}(d) = c_{b,l}(d)/n_l.$$

KL-UCB upper and lower confidence bounds are

$$\begin{split} U_{b,l}(d) &\leftarrow \operatorname*{argmax}_{q \in [\hat{c}_{b,l}(d),1]} \left\{ D_{\mathrm{KL}}(\hat{c}_{b,l}(d)||q) \leq \frac{\log T + 2\log\log T}{n_l} \right\}, \\ L_{b,l}(d) &\leftarrow \operatorname*{argmin}_{q \in [0,\hat{c}_{b,l}(d)]} \left\{ D_{\mathrm{KL}}(\hat{c}_{b,l}(d)||q) \leq \frac{\log T + 2\log\log T}{n_l} \right\}, \end{split}$$

where $D_{KL}(p||q)$ denotes the *Kullback-Leibler divergence* between Bernoulli random variables with means p and q.

Experiments

- Yandex dataset
 - A dataset of 35M search sessions, each of which may contain multiple search queries
 - Each query is associated with displayed documents at positions 1 to 10 and their clicks.
- 60 frequent search queries are selected.
- For each query, CM and PBM are learned using PyClick.
- For each query, the goal is to rerank L = 10 most attrative items with the objective of maximizing the expected number of clicks at the first K = 5 positions.

Experiments

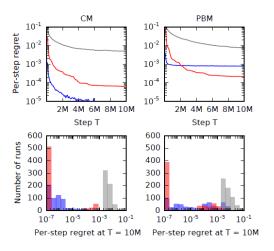


Figure 2. The comparison of BatchRank (red), CascadeKL-UCB (blue), and RankedExp3 (gray) in the CM and PBM. In the top plots, we report the per-step regret as a function of time T, averaged over 60 queries and 10 runs per query. In the bottom plots, we show the distribution of the regret at T=10M.