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Introduction

e Unsupervised learning (SVDD, one-class SVM)
@ Supervised learning (classifier model)

@ These models often fail to match the required detection rates.
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Introduction

1 Why the unsupervised learning paradigm is needed to solve anomaly
detection

2 Proposed model (SSAD)
3 Active learning
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Data distiribution

@ Let’s consider non-stationary outlier distribution
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Figure 3: Left: training data stems from two clusters of normal data (gray) and one small anomaly
cluster (red). Right: two additional anomaly clusters (red) appear in the test data set.
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Data distiribution

@ Performance of 4 models.
@ Left : Identical training and test dsitribution

@ Right : In test data, there is a different anomaly cluster.
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Figure 2: Left: The standard supervised classification scenario with identical training and test dis-

tributions. Right: The anomaly detection setting with two novel anomaly clusters in the
test distribution.
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SVDD

@ SSAD(proposed model) is based on SVDD.
o Before explaining SSAD(proposed model), Let's remind SVDD.
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SVDD

We are given n observations xi,...,x, € X.

The underlying assumption is that the bulk of the data stems from the
same (unknown) distribution and we call this part of the data normal.

Compute a hypersphere with radius R and center c.
f(x) = llo(x) —cl> = R?
x is treated as normal data if f(x) <0

Point lying outised of the ball(i.e. f(x) > 0 ) are considered
anomalous
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SVDD

@ Use slack variable &
® mingce R? 41y 37, &
subject to (i) [|¢(x) —c||> < R? + &
(i) & >0
@ Above OP can be solved equivalently in dual space using the
representation ¢ = > I a;p(x;)
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Proposed model

@ In addition to the n unlabeled data xi,...,x, € X', we are now given
m labeled observations (x,y5, ..., x5, ym) € X X Y
@ Nomial data are encoded y* = 1 and anomalies are encoded y* = —1

@ We want to place anomalies outside of the ball
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Proposed model

° minR,% c R? — K+ Ny Z, 1 §i+m Zn+,ﬂ_1
subject to (i) [|o(x;) —c||? < R + ¢&;
(i) ¥ (lo(x) —el® = R?) < =y + &
(ii)) & = 0
(iv) & >0
@ The inclusion of negatively labeled data renders the above
optimization problem non-convex.
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-
Remedy for OP

@ ldea : Translate above equation into an unconstrained problem
@ Resolve the slack term as follows (Chapelle and Zien, 2005)

o & =I(R* —[|¢(x;) — |?)

o & = I(y;(R* —[|o(x;) —cll> = 7)), I(t) = max{~t,0}

o c= 1 aig(xi) + X agyfo(x)
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Re-fomulate optimization problem

© Ming o {R? — Ky + 1y Sorq l(R? — k(xi, x;) + (2¢; — @) Kav +
Y JET k(v (RR = k(' X)) + (2€] — a) Ka) — )}

o K = (kj)i<ij<n denotes the kernel matrix given by
kij = k(xi, xj) =< ¢(xi), p(x;) >

@ €1,...,€n.m is the standard base of R™™

@ Use gradient-based optimization tool.
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Active learning for SSAD

1 Borderline points
2 Novel anomaly classes
3 Combind
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b LF Gl
1 x = argminxe (s, .} max, ool —

arg Minye g xy |RZ = [6(x) — €|

2 Let A= (ajj)ij=1,...n+m be adjacent matrix of training data.
> Introduce an extended labeling i, ..., ¥h+m defining y; = 0 if

unlabeled data, yj = y; for labeled instance
» x =arg MiNge o} 3% Z"+m()/j +1)a;;

3 x = arg minxe{xl,.“,xn} 5@ + % 7+{n(){1 + 1)alj7 o€ [07 1]
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(a) margin strategy (b) cluster strategy (c) combined strategy
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Figure 6: Performance of various unsupervised, supervised and semi-supervised methods in the
anomaly detection setting.

ngchan, Choi mi-Supervised Anomaly Detection



0.995|
0.99|

0.01] fin %]

A

0.97|
0.965|
0.96
0.955|

0.985|
0.98|

> 0.975)

===SVDD
~ = svDD™
——SSAD (proposed method)

5 10 15
% of labeled data

(a) Detection accuracies of regular attacks.
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(b) Detection accuracies of cloaked attacks.



