# Error-Driven Incremental Learning in Deep Convolutional Neural Network for Larg-Scale Image Classification

Xiao, Tianjun, et al. (2014)

Proceedings of the 22nd ACM international conference on Multimedia.

Presenter: Sarah Kim 2018.09.21

#### Introduction



Figure 1: Incremental learning in multiclass classfication

▶ We developed a training algorithm that grows a network not only incrementally but also hierarchically.



### Incremental Learning Model

- ▶ Assume there is a model  $M_0$  that is already trained on  $N_0$  classes.
- ▶ Goal: evolve from  $M_{i-1}$  to  $M_i$  to train  $N_i$  classes, in which  $N_i N_{i-1}$  are new classes for i = 1, ..., T.
- ▶ The model must increase it capacity to accomodate more classes:
  - 1. Flat increment: the output units is increased to hold more classes.
  - Clone increment: the total classes are partitioned into superclasses, and consider a hierarchy of models.

# Incremental Learning Model



Figure 2 : A hierarchy of models: branch models predict superclasses, leaf models return final predictions.

### Starting from a Single Superclass

- ▶ Here, we discuss the details of this incremental learning.
- ▶ In the starting point of the training, all  $N_0$  classes are in one single superclass and predicted by one model  $L_0$ .
- 1. Flat increment: extend  $L_0$  to  $L'_0$  by inserting more output units, which increase a small amount of capacity.
- 2. Clone increment:
  - Partition the superclass into K superclasses;
  - ▶ Clone  $L_0$  into several new leaf models  $L_1, ..., L_K$  to predict final outputs.
  - A branch model B with K final output units is also cloned from L₀ to predict a correct leaf model on a given input sample.

# Starting from a Single Superclass



Figure 3: Two choices of capacity increment. Left: Flat increment, Right: Clone increment.

### Starting from a Single Superclass

#### How to partition a superclass

- 1. A validation set of  $N_0$  are tested through  $L_0$ , and calculating a confusion matrix  $C \in \mathbb{R}^{N_0 \times N_0}$  from the output.
  - Then,  $C_{ij}$  denotes the probability that the *i*-th class is predicted to *j*-th class, which also measure the similarity between class *i* and *j*.
- 2. Use spectral clustering partition to split  $N_0$  classes into K clusters based on the confusion matrix.
- 3.  $N_1 N_0$  new classes are assigned to superclasses based on their confusion rates among the superclasses.

#### Main algorithm

#### Algorithm 2: IncrementalLearning

```
(S, \mathcal{L}, \mathcal{B}, S_{new}): superclass set S, leaf model set \mathcal{L}
input
     (each l \in \mathcal{L} is corresponding to a s \in \mathcal{S}), branch model
     set \mathcal{B}, new class set \mathcal{S}_{new}
output (\mathcal{S}, \mathcal{L}, \mathcal{B}): updated superclass set \mathcal{S}, leaf model set
     \mathcal{L}, branch model set \mathcal{B}
     /* ditribute new classes to superclasses* /
     calculate the confusion matrix \Phi with entry \Phi(c,s) for
     probability of predicting c \in S_{new} to s \in S
     for all c \in \mathcal{S}_{new} do
        select s \in \mathcal{S} with maximum \Phi(c, s)
        s = s \cup \{c\}
     end for
     /* incremental training */
     for all s \in \mathcal{S} and the corresponding l \in \mathcal{L} do
        (l', b, l_1, l_2, \dots, l_K) = \text{ExtendLeafModel}(s, l)
        if b \neq \emptyset then
           insert b to B, replace l by \{l_1, l_2, ..., l_K\} in \mathcal{L}
        else
           replace l by l' in \mathcal{L}
        end if
     end for
     /* refine brach models (optional) */
     for all b \in \mathcal{B} do
        incrementally train b according to updated subtrees
     end for
     return (S, \mathcal{L}, \mathcal{B})
```

#### **Experiments**

- ▶ Dataset: In ImageNet\_1K, the dataset include all the 398 animal classes (training set: 501K images, validation set: 18K images).
- ➤ To create an incremental training process, the dataset is incremented from 195 randomly drawn classes to 398 classes.

| Training     | Epochs | Error Rate |
|--------------|--------|------------|
| from-scratch | 41     | 38.6%      |
| incremental  | 10     | 41.6%      |
| incremental  | 20     | 39.2%      |
| incremental  | 30     | 37.9%      |
| incremental  | 40     | 36.8%      |