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Gradient descent

e Goal : minimize f : R” — R

e Gradient descent :
Suppose f is convex and differentiable. from a given point xp, generate
sequence
X1 7= Xk — M’ (%)

where A\ > 0 and f’(x«) is the vector for which
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Subgradient descent

e Suppose f is convex and not differentiable, but closed (its epigraph is
closed). then we can define its subgradient gx as a substitute for the
gradient f'(xx), that is an element of the set:

Of(xi) == {g € R": f(x) > f(xx) + (x — xx) " g for all x € R"}.

o Definition depends on a scalar product that we have chosen arbitrarily.
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Generalized subgradient

e Generalization of subgradient descent (Nemirovski and Yudin, 1979)

e Let E be a Euclidean space and E™ is its dual, i.e., the set of all linear
applications from E to R. For h € E* and x € E, Denote < h, x >= h(x).

e Denote || - || a norm on E. Then its corrensponding norm on E* is defined
as
[|hll« == max < hx>  heE"
[Ix||=1,x€E

Then the definition of subgradient can easily extend to more general
setting:

Of(x) :={g € E": f(x) > f(xx)+ < g,x — xx > forall x € E}.
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Mirror descent

e Goal : solve convex optimization problems that are formulated as:

f*:=minf

i )
where Q C E is a closed convex set, The function f : @ — R is closed,
convex, and equipped with an oracle, which means for all x € @ we can
compute the value f(x) and its subgradient g € 9f(x).

o Mirror descent algorithm
Let Vo be a map from E* to Q. Set so := 0 and select a set of step-sizes
{A«}k>0 and a starting point xo € Q.

For k=0,1,---,
@ Determine gy € Of (xk).
@ set sy 1= Sk — A\i8k-
© compute xi11 := VQ(skt1)-
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Constuction of Vg

o Mirror descent algorithm requires a prox-function d : @ — R, that is,
strongly convex continuously differentiable function: there exist o > 0
such that for every x,y € Q,

d(y) 2 d()+ < d'(x),y = x > +2ly = xII*
And, assume that d has a (unique) minimizer x on Q.

o Define Vg as

Vo(s) == argmax{< s,x — xo > —d(x)}
x€EQ

It is well-defined since d is strongly convex.
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Convergence for Mirror descent

e Theorem
Assume that there exist a constant D s.t. D > d(x™), where x* € Q and
f(x*) = f"). With i := min{f(x;) : 0 <i < k}, we have:

fi — < S /\< +Z/\|g:||>

i=0

e If there is a constant I for which ||gi||« < T for all i, Then the above
algorithm is guaranteed to converge as long as ELO i diverges and
Zf:o X2 converges as k goes to infinity.

e The later condition implies that limy_,oc Ak = 0.

e (?7) new subgradients should be treated with more consideration than old
ones as they are likely to contain more relevant information.
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Nesterov's Primal-Dual Subgradient Algorithm

e Given a paramtere 5 > 0, we set:

Vg 5(s) := argmax{< s,x —xo > —fd(x)}
x€EQ

e Nesterov’s algorithm
Set sp := 0, select a set of step-sizes { A« }x>0 and a non-decreasing
sequence { Bk }«k>o0 of projection paramters. Set
Xo := argmin{d(x) : x € Q}.

For k=0,1,---,
@ Determine gy € Of (xk).
@ set sip1 1= Sk — Akgk-
© compute xx 1 = VQka+1(Sk+1)'

Hedge Algorithm
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Convergence for Nesterov's algorithm

e Define a regret Ry as:

k
Rk := max{Z)\; < gi,xi— x> x€Q,d(x) < D}.
i=0
e Theorem
Assume that there exist a constant D s.t. D > d(x"), where x* € Q and
f(x*) = f*). With fi := min{f(x;) : 0 < i < k}, we have:

k
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o If we choose \j =1 for all j, Bj41 := vBj+1, fo =1 and bej1 =Y 1 )+,
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Stochastic descent

e Goal : Given a Borel probability space (€2, B, P) and an objective function
¢ Q x Q — R (loss function) that is P- integrable for each fixed x and
where Q C E is the feasible set, we aim at solving:

f*:= min Ep[¢(x, )] = min f(x).

e However, we don't know about P, so we can't compute and value about
f. Instead, we observe a series of samples {wk q }1<a<t, C Q.

e Instead of using gk € Of(x«), use stochasitc subgradient of f at x,
Bii= S Vied(xk, Wi )/ Lk, where Vid(xk, wh,a) € Oxd(Xk, Wk,a)-
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Stochastic Mirror descent

e Theorem
Suppose we use gx instead of g in Nesterov's algorithm. Let My := Z,"(:o
and 3
fic := min, Epw [¢(xi,w)]
, we have:

it (o 23 Y
k _Zk )\i k+1 20_ < ,Bi 8ill« .
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Stochastic Mirror descent

e Theorem
Assume that the above conditions hold and let

V = max{é(x,w) — ¢(x,w) : w,w’ € Q,x € Q} < 0.

For every € > 0, the inequality

k
, . 1 1 N,
Og]ilgk f(Xi) —f < Zk h <Bk+1D + E IE:O Er ) =+ 2e.

i=0 N
hols with a probability of at least
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Hedge Algorithm

On-line allocation model

e The allocation agent A has N options or stratagies to choose from. At
each time step k =1,2,--- | T

e The allocator A decides on a distribution p* over the strategies; p* > 0 is
the amount allocated to strategy /, and Z,N:l pk=1.

e Each strategy i then suffers some loss /f which is determined by the
‘enviroment’.

o Let wx € Q be a k-th sample. The loss suffered by A is then

S pFli(wk) = p* - 1%, i.e. the average loss of the strategies w.r.t. A's
chosen allocation rule.
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Hedge Algorithm

e Motive : Littlestone and Warmuth's weighted majority algorithm (1994)

e Parameters : 3 € [0,1]
e Choose utility function Ug : [0,1] — [0, 1] satisfying

Br<Us(r)<1—(1-p)r

for all r € [0,1]. General choice is Ug(r) = 3.

o Let wh = (wf, -, wg)" be a weight vector (unnormalized i*). Initialize
1

w.
For k=1,2,---, T,

@ Choose allocation

® Draw w, € Q
© Receive loss vector /(wy) € [0,1]V.
@ Update weight as

Wik+1 = Wik : UB(’ik)

At each iteration k, our strategy faces a loss of L := Z,N:1 prli(wk)
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Hedge Algorithm

e Theorem
For some 3 € [0, 1], we have

T T
;Ck 122/\,;/,(0.1;()_\/2TlogN+IogN

Therefore, if T increases as infinity, average regret converges to 0.
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Hedge Algorithm as Stochastic Mirror descent algorithm

e For Us : [0,1] — [0,1], Let ¢(x,w) = — S| xilog Us(li(w)). and
consider the optimization problem

min Ep[¢(x, w)]

where the set S, is the standard simplex of RV:

N
Sn::{xeRﬂ:inzl}

i=1

Then, Vié(x,w) = —logUs(I(w)).
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Hedge Algorithm as Stochastic Mirror descent algorithm

o If we use prox-function d as entropy function :

N
d:S,— R, x—d(x) ::Zx,-logx,-JrlogN

i=1
. Then corresponding mirror operator takes the following form :

exp(s) ]

Vo(s) = argmax{<s,x —xo > —d(x) : x € Sn} = [Z"exms-)
j=1 P licic

Then, the solution of stochastic mirror descent algorithm is equal to the
solution of Hedge algorithm.
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