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Gradient descent

• Goal : minimize f : Rn → R

• Gradient descent :
Suppose f is convex and differentiable. from a given point x0, generate
sequence

xk+1 := xk − λk f
′(xk)

where λk > 0 and f ′(xk) is the vector for which

f ′(xk)>h = lim
λ↘0

f (xk + λh)− f (xk)

t
∀h ∈ Rn
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Subgradient descent

• Suppose f is convex and not differentiable, but closed (its epigraph is
closed). then we can define its subgradient gk as a substitute for the
gradient f ′(xk), that is an element of the set:

∂f (xk) := {g ∈ Rn : f (x) ≥ f (xk) + (x − xk)>g for all x ∈ Rn}.

• Definition depends on a scalar product that we have chosen arbitrarily.
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Generalized subgradient

• Generalization of subgradient descent (Nemirovski and Yudin, 1979)

• Let E be a Euclidean space and E∗ is its dual, i.e., the set of all linear
applications from E to R. For h ∈ E∗ and x ∈ E , Denote < h, x >= h(x).

• Denote || · || a norm on E . Then its corrensponding norm on E∗ is defined
as

||h||∗ := max
||x||=1,x∈E

< h, x >, h ∈ E∗

Then the definition of subgradient can easily extend to more general
setting:

∂f (xk) := {g ∈ E∗ : f (x) ≥ f (xk)+ < g , x − xk > for all x ∈ E}.
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Mirror descent

• Goal : solve convex optimization problems that are formulated as:

f ∗ := min
x∈Q

f (x)

where Q ⊆ E is a closed convex set, The function f : Q → R is closed,
convex, and equipped with an oracle, which means for all x ∈ Q we can
compute the value f (x) and its subgradient g ∈ ∂f (x).

• Mirror descent algorithm
Let VQ be a map from E∗ to Q. Set s0 := 0 and select a set of step-sizes
{λk}k≥0 and a starting point x0 ∈ Q.

For k = 0, 1, · · · ,
1 Determine gk ∈ ∂f (xk ).
2 set sk+1 := sk − λkgk .
3 compute xk+1 := VQ(sk+1).
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Constuction of VQ

• Mirror descent algorithm requires a prox-function d : Q → R, that is,
strongly convex continuously differentiable function: there exist σ > 0
such that for every x , y ∈ Q,

d(y) ≥ d(x)+ < d ′(x), y − x > +
σ

2
||y − x ||2.

And, assume that d has a (unique) minimizer x0 on Q.

• Define VQ as

VQ(s) := argmax
x∈Q

{< s, x − x0 > −d(x)}

It is well-defined since d is strongly convex.
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Convergence for Mirror descent

• Theorem
Assume that there exist a constant D s.t. D ≥ d(x∗), where x∗ ∈ Q and
f (x∗) = f ∗). With fk := min{f (xi ) : 0 ≤ i ≤ k}, we have:

fk − f ∗ ≤ 1∑k
i=0 λi

(
D +

1

2σ

k∑
i=0

λ2
i ||gi ||2∗

)
.

• If there is a constant Γ for which ||gi ||∗ ≤ Γ for all i , Then the above
algorithm is guaranteed to converge as long as

∑k
i=0 λi diverges and∑k

i=0 λ
2
i converges as k goes to infinity.

• The later condition implies that limk→∞ λk = 0.

• (?) new subgradients should be treated with more consideration than old
ones as they are likely to contain more relevant information.
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Nesterov’s Primal-Dual Subgradient Algorithm

• Given a paramtere β > 0, we set:

VQ,β(s) := argmax
x∈Q

{< s, x − x0 > −βd(x)}

• Nesterov’s algorithm
Set s0 := 0, select a set of step-sizes {λk}k≥0 and a non-decreasing
sequence {βk}k≥0 of projection paramters. Set
x0 := argmin{d(x) : x ∈ Q}.

For k = 0, 1, · · · ,
1 Determine gk ∈ ∂f (xk ).
2 set sk+1 := sk − λkgk .
3 compute xk+1 := VQ,βk+1

(sk+1).



Mirror descent Hedge Algorithm

Convergence for Nesterov’s algorithm

• Define a regret Rk as:

Rk := max

{
k∑

i=0

λi < gi , xi − x >: x ∈ Q, d(x) ≤ D

}
.

• Theorem
Assume that there exist a constant D s.t. D ≥ d(x∗), where x∗ ∈ Q and
f (x∗) = f ∗). With fk := min{f (xi ) : 0 ≤ i ≤ k}, we have:

fk − f ∗ ≤ Rk∑k
i=0 λi

≤ 1∑k
i=0 λi

(
βk+1D +

1

2σ

k∑
i=0

λ2
i

βi
||gi ||2∗

)
.

• If we choose λj = 1 for all j , βj+1 := νβ̂j+1, β̂0 = 1 and b̂e j+1 =
∑j

i=0

1

β̂i
,

and ν :=
Γ√

2σD
, RHS = O(k−0.5)
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Stochastic descent

• Goal : Given a Borel probability space (Ω,B,P) and an objective function
φ : Q × Ω→ R (loss function) that is P- integrable for each fixed x and
where Q ⊆ E is the feasible set, we aim at solving:

f ∗ := min
x∈Q

EP [φ(x , ω)] = min
x∈Q

f (x).

• However, we don’t know about P, so we can’t compute and value about
f . Instead, we observe a series of samples {ωk,α}1≤α≤Lk ⊆ Ω.

• Instead of using gk ∈ ∂f (xk), use stochasitc subgradient of f at xk ,
g̃k :=

∑Lk
α=1∇xφ(xk , ωk,α)/Lk , where ∇xφ(xk , ωk,α) ∈ ∂xφ(xk , ωk,α).
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Stochastic Mirror descent

• Theorem
Suppose we use g̃k instead of gk in Nesterov’s algorithm. Let Mk :=

∑k
i=0

and
f̃k := min

0≤i≤k
EPMk [φ(xi , ω)]

, we have:

f̃k − f ∗ ≤ 1∑k
i=0 λi

(
βk+1D +

1

2σ

k∑
i=0

λ2
i

βi
||gi ||2∗

)
.
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Stochastic Mirror descent

• Theorem
Assume that the above conditions hold and let

V := max{φ(x , ω)− φ(x , ω′) : ω, ω′ ∈ Ω, x ∈ Q} <∞.

For every ε > 0, the inequality

min
0≤i≤k

f (xi )− f ∗ ≤ 1∑k
i=0 λi

(
βk+1D +

1

2σ

k∑
i=0

λ2
i

βi
Γ2

)
+ 2ε.

hols with a probability of at least

1− 2 exp

(
−

2ε2(
∑k

j=0 λj)
2

MkV 2
min

0≤i≤k

L2
i

λ2
i

)
.
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On-line allocation model

• The allocation agent A has N options or stratagies to choose from. At
each time step k = 1, 2, · · · ,T

• The allocator A decides on a distribution pk over the strategies; pk
i ≥ 0 is

the amount allocated to strategy i , and
∑N

i=1 p
k
i = 1.

• Each strategy i then suffers some loss l ti which is determined by the
‘enviroment’.

• Let ωk ∈ Ω be a k-th sample. The loss suffered by A is then∑n
i=1 p

k
i li (ωk) = pk · lk , i.e. the average loss of the strategies w.r.t. A’s

chosen allocation rule.
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Hedge Algorithm

• Motive : Littlestone and Warmuth’s weighted majority algorithm (1994)

• Parameters : β ∈ [0, 1]

• Choose utility function Uβ : [0, 1]→ [0, 1] satisfying

βr ≤ Uβ(r) ≤ 1− (1− β)r

for all r ∈ [0, 1]. General choice is Uβ(r) = βr .

• Let w k = (w k
1 , · · · ,w k

N)> be a weight vector (unnormalized pk). Initialize
w 1.
For k = 1, 2, · · · ,T ,

1 Choose allocation

pk =
wk∑N
i=1 w

k
i

2 Draw ωk ∈ Ω
3 Receive loss vector l(ωk ) ∈ [0, 1]N .
4 Update weight as

wk+1
i = wk

i · Uβ(lki )

At each iteration k, our strategy faces a loss of Lk :=
∑N

i=1 p
k
i li (ωk)
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Hedge Algorithm

• Theorem
For some β ∈ [0, 1], we have

T∑
k=0

Lk − min
1≤i≤N

T∑
k=1

li (ωk) ≤
√

2T logN + logN.

Therefore, if T increases as infinity, average regret converges to 0.
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Hedge Algorithm as Stochastic Mirror descent algorithm

• For Uβ : [0, 1]→ [0, 1], Let φ(x , ω) = −
∑N

i=1 xi logUβ(li (ω)). and
consider the optimization problem

min
x∈Sn

EP [φ(x , ω)]

where the set Sn is the standard simplex of RN :

Sn := {x ∈ RN
+ :

N∑
i=1

xi = 1}

Then, ∇xφ(x , ω) = −logUβ(l(ω)).
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Hedge Algorithm as Stochastic Mirror descent algorithm

• If we use prox-function d as entropy function :

d : Sn → R, x → d(x) :=
N∑
i=1

xi log xi + logN

, Then corresponding mirror operator takes the following form :

VQ(s) = argmax{< s, x − x0 > −d(x) : x ∈ Sn} =

[
exp(si )∑n
j=1 exp(sj)

]
1≤i≤n

Then, the solution of stochastic mirror descent algorithm is equal to the
solution of Hedge algorithm.
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