Generating Visual Explanations

Lisa et al.

이종진

Seoul National University

ga0408@snu.ac.kr

Nov 15, 2018

Explainable AI; Generating Visual Explanations

- Deep classification methods have had tremendous success in visual reconition.
- Most of them cannot provide a consistent justification of why it made a certain prediction.

Explainable AI; Generating Visual Explanations

- Proposed model predicts a class label(CNN), and explains why the predicted label is appropriate for the image(RNN)
- First method to produce deep visual explanations using language justifications
- Provide an explanation not a description

Visual Explanation

Western Grebe

Description: This is a large bird with a white neck and a black back in the water

Class Definition: The Western Grebe is a waterbird with a yellow pointly beak, white neck and belly, and black back.

Explanation: This is a Western Grebe because this bird has a long white neck, pointly yellow beak and red eye.

Explanation should be class discriminative!!

Visual Explanation



- ▶ Visual explanation are both image relevant and class relevant.
- Discriminate class and accurately describe a specific image instance.
 - \rightarrow Novel Loss function.

Proposed Model

- ► Input : Image (+ Descriptive Sentences)
- ▶ Output : This is a **CLASS**, because **argument 1** and **argument 2** and...
- Use pretrained CNN(Compact bilinear fine- grained classification model),
 Sentence classifier(Single Layer LSTM)
- Two contributions are using a predicted label as a input and using novel loss(discrimiative loss) for image relevance and class relevance
 - 1. Use a predicted label as a input
 - Propose a novel reinforcement learing based loss for image relevance and class relevance

Architecture

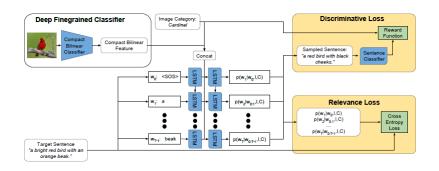
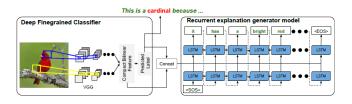


Figure: Architecture

Bilinear Models



- ▶ $f: L \times I \mapsto \mathbb{R}^{c \times D}$, a location L and image I
- $ightharpoonup f_A, f_B$: use pretrained VGG
- ▶ Use pooling operation $P(f_A(I, I)^T f_B(I, I), I \in L)$
- (e.g) $\phi(I) = \sum_{I \in L} f_A(I, I)^T f_B(I, I)$

8/20

Proposed loss

Proposed loss

$$L_R - \lambda \mathbb{E}_{\tilde{w} \sim p_L(w)}[R_D(\tilde{w})]$$

- ▶ Relevance loss(*L_R*) is related with "Image Relevance"
- ▶ Discriminiative loss($\mathbb{E}_{\tilde{w} \sim p_L(w)}[R_D(\tilde{w})]$) is related with "Class Relevance"

Relevance Loss

ightharpoonup Relevance Loss(L_R)

$$L_R = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{t=0}^{T-1} \log p_L(w_{t+1}|w_{o:t}, I, C)$$

- w_t : ground truth word at t, I: image, C: category, N: batch size
- Average hidden state of the LSTM

Discriminative Loss

$$\mathbb{E}_{\tilde{w} \sim p_L(w)}[R_D(\tilde{w})]$$

- Based on a reinforcement learning paradigm.
- $-R_D(\tilde{w}) = p_D(C|\tilde{w})$
- $p_D(\mathrm{C}|w)$: pretrained sentence classifier
- The accuracy of this classifier(pretrained) is not important (22%)
- $ilde{w}$: sampled sentences from LSTM($p_L(w)$)

Novel Loss

Relevance Loss

$$L_R = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{t=0}^{T-1} \log p_L(w_{t+1}|w_{o:t}, I, C)$$

Discriminative Loss

$$R_D(\tilde{w}) = p_D(\mathbf{C}|\tilde{w})$$

- The accuracy of this classifier(pretraine) is not important (22%)
- Proposed Loss

$$L_R - \lambda \mathbb{E}_{\tilde{w} \sim p_L(w)}[R_D(\tilde{w})]$$

Minimizing Loss

- Since expectation over descriptions is intractable, use Monte Carlo sampling from LSTM.
- ► The final gradient to update the weights W

$$\nabla_{W_L} L_R - \lambda R_D(\tilde{w}) \nabla_{W_L} \log P(\tilde{w})$$

Experiment

- Dataset : Caltech UCSD Birds 200-2011(CUB)
 - Contains 200 classes of North American bird species.
 - 11,788 images
 - 5 sentences for detail description of the bird(These are not collected for the task of visual explanation.)
- ▶ 8,192 dimensional features from the classifier
 - Features from the penultimate layer of the compact bilinear fine-grained classification model
 - Pre-trained on the CUB dataset
 - accuracy: 84%
- LSTM
 - 1000-dimensional embedding, 1000 dimensional LSTM

Experiment

- ▶ Baseline models : Description model & Definition model
 - Description model : Training the model by conditioning only on the image features as input
 - Definition model: Training the model to generate explaining sentences only using the image label as input
- Abalation models : Explation-label model & Explanation-discriminative model

Measure

- METEOR(Image relevance)
 - METEOR is computed by matching words(synonyms) in generated and reference sentences
- CIDEr(Image relevance)
 - CIDEr measures the similarity of a generated sentence to reference sentence by counting common n-grams which are TF-IDF weighted.
- ► Similarity(class relevance)
 - Compute CIDEr scores using all reference sentences which correspond to a particular class, instead of using ground truth
- ► Rank(class relevance)
 - Ranking over similarity of all classes

Experiment: Results

	Image Re	levance	Class Re	levance	Best Explanation
	METEOR	CIDEr	Similarity	Rank	Bird Expert Rank
				(1-200)	(1-5)
Definition	27.9	43.8	42.60	15.82	2.92
Description	27.7	42.0	35.3	24.43	3.11
Explanation-Label	28.1	44.7	40.86	17.69	2.97
Explanation-Dis.	28.8	51.9	43.61	19.80	3.22
Explanation	29.2	56.7	52.25	13.12	2.78

Figure: Result

Experiment: Results

Comparison of Explanations, Baselines, and Ablations.

This is a Bronzed Cowbird because ...

Definition: this bird is black with blue on its wings and has a long pointy beak.

Description: this bird is nearly all black with a short pointy bill.

Explanation-Label: this bird is nearly all black with bright orange eyes.

Explanation-Dis.: this is a black bird with a red eye and a white beak.

Explanation: this is a black bird with a red eye and a pointy black beak.

- Green: correct, Yellow: mostly correct, Red: incorrect
- 'Red eye' is a class relevant attributes.

Experiment : Results

Comparison of Explanations and Definitions

This is a **Downy Woodpecker** because...

Definition: this bird has a white breast black wings and a red spot on its head.

Explanation: this is a black and white bird with a **red spot** on its crown.

- Definition can produce sentencesd which are not image relevant

Experiment : Results

► Role of Discriminative Loss

This is a Black-Capped Vireo because...

Description: this bird has a white belly and breast black and white wings with a white wingbar.

Explanation-Dis: this is a bird with a white belly yellow wing and a **black head**.

- Both models generate visually correct sentences.
- 'Black head' is one of the most prominent distinguishing properties of this vireo type.