Adaptive Collaborative Topic Modeling for Online Recommendation

Al-Ghossein, Marie, et al. (2018)

Proceedings of the 12th ACM Conference on Recommender Systems

Presenter: Sarah Kim 2018.12.07

1. Introduction

- Because data are generated continuously in real-world, a Recommender System (RS) should be able to handle user-item feedback and the availability of new items in real-time.
- ► Learning from data streams is essential to account for **concept drifts** which occur when the definition of modeled concepts changes over time.
- ▶ This paper propose a online RS in a dynamic environment where
 - 1. users interact with items in real time:
 - 2. new items are expected to arrive with textual description.

1. Introduction

- Our approach combines AWILDA and incremental matrix factorization (MF).
 - AWILDA: an adaptive version of online LDA that is able to analyze and model documents arriving in a stream;
 - Incremental MF: a variant of MF adpated to the incremental nature of data streams.
- ► The proposed method has capacity of automatically detecting and adapting to drifts, hence it suitable for real-world scenarios where changes in topics of document streams are frequently happening.

Matrix Factorization (MF)

- ▶ For the user u, the item i, $R_{ui} = 1$ if u interacted with i, and 0 otherwise.
- ▶ *D*: the set of observed interactions
- K: the number of latent factors
- ▶ MF minimizes the following objective function:

$$\underset{P,Q}{\mathsf{argmin}} \sum_{(u,i) \in D} \left(R_{ui} - P_u Q_i^\top \right)^2 + \lambda_u \|P_u\|^2 + \lambda_i \|Q_i\|^2$$

where P_u , Q_i are K-dimensional latent vector for u, i, and λ_u , λ_i are regularization parameters.

2.1. Incremental Matrix Factorization

Incremental MF

- ▶ Observations < *u*, *i* > are received one after the other;
- ► For each received observation, P and Q are updated using the gradient of the objective for this observations only.
- ▶ If an user or an item are observed for the first time, they are added to P or Q with random initialization, and the values of P and Q are then updated using the observation.

2.2. Latent Dirichlet Allocation

- Latent Dirichlet Allocation (LDA) is a generative model describing text documents and corpora.
- In LDA, a document is described as a mixture of topics, and a topic corresponds to a word distribution.
- ▶ For training of LDA, use either Gibbs sampling or variational inference.
- Online LDA is an online version of variational inference based on online stochastic optimization.

2.2. Latent Dirichlet Allocation

- ► LDA assumes the following generative process for a corpus consisting of *M* documents each of length *N_i*:
 - 1. Choose $\theta_i \sim \text{Dir}(\alpha)$, where $i = 1, \dots, M$,
 - 2. Choose $\phi_k \sim \text{Dir}(\beta)$, where k = 1, ..., K and K is the number of topics,
 - 3. For each of the word positions i, j, where i = 1, ..., M and $j = 1, ..., N_i$,
 - (a) Choose a topic $z_{i,j} \sim \text{Multinomial}(\theta_i)$.
 - (b) Choose a word $w_{i,j} \sim \text{Multinomial}(\phi_{z_{i,j}})$.

2.3. Adaptive Sliding Window

- ▶ Adaptive Sliding Window algorithm (ADWIN) uses a sliding window *W* to detect a change in a series of one-dimensional observations.
- ▶ A drift is detected if W can be separate into two subwindows $W = W_0 W_1$ s.t. the difference of means μ_{W_0} and μ_{W_1} is large enough.

3. Adaptive Collaborative Topic Modeling

3.1. Adaptive Window based Incremental LDA

- Adaptive Window based Incremental LDA (AWILDA) used for topic drift detection in LDA which is a expansion of ADWIN.
- AWILDA is based on two models of LDA:
 - LDA_m is used for document modeling
 - ► LDA_d is used for the detection of drifts only
- ▶ AWILDA works as follows: When a new document is received,
 - 1. Compute likelihood $\mathcal{L} = p(w|LDA_d)$.
 - 2. Process $\mathcal L$ with ADWIN for detecting a drift.
 - 3. If ADWIN detects a drift for window decomposition $W = W_0 W_1$: Retrain LDA_m , LDA_d based on the documents in W_1 .
 - 4. Update LDA_m from the new document based on the online LDA algorithm.

Algorithm 1 Overview of CoAWILDA

```
Data: set of observations O
      Input: number of latent factors K, learning rate \eta,
regularization parameters \lambda_{\mu} and \lambda_{i}
      Output: P, Q
  1: for o in O do
           if o = \langle i, doc_i \rangle then
                                                                           > new item added
                \theta_i \leftarrow AWILDA(doc_i)
                \epsilon_i \sim \mathcal{N}(0, \lambda_i^{-1} I_K)
                O_i \leftarrow \theta_i + \epsilon_i
         end if
         if o = \langle u, i \rangle then
                                                                    ▶ interaction received
                 if u \notin Rows(P) then
                                                                      new user observed
  8:
                      P_{\mu} \sim \mathcal{N}(0, \lambda_{\mu}^{-1} I_{K})
  9:
                end if
 10:
                e_{ui} \leftarrow 1 - P_u \cdot Q_i^T
11:
           P_{ii} \leftarrow P_{ii} + \eta(e_{ii}O_i - \lambda_{ii}P_{ii})
12:
               \epsilon_i \leftarrow \epsilon_i + \eta(e_{ui}P_u - \lambda_i\epsilon_i)
13:
               O_i \leftarrow \theta_i + \epsilon_i
 14:
           end if
15:
16: end for
```

4. Experiments

- ▶ Dataset: The *plista* dataset contains a collection of news articles published in German on several news portals (32,706,307 interactions from 1,362,097 users on 8,318 news articles).
- Evaluation measure for topic modeling:

$$perplexity(D_{test}) = \exp \left\{ -rac{\sum_{d=1}^{M}\log_2 p(w_d)}{\sum_{d=1}^{M}N_d}
ight\},$$

where D_{test} is unseen documents, M is the number of documents in D_{test} .

Evaluation measure for online recommendation: recall@N

4. Experiments

4.1. Performance of AWILDA for topic modeling

▶ Performance evaluation of online LDA and AWILDA on plista

4. Experiments

4.2. Performance of CoAWILDA for online recommendation

▶ Performance evaluation using recall@N on *plista*

