Spectral Collaborative Filtering

(Lei Zheng, 2018)

Presented by Jiin Seo December 7, 2018

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. Introduction
- 2. Definitions
- 3. Proposed Model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

4. Experiments

1. Introduction

2. Definitions

3. Proposed Model

4. Experiments

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

1. Introduction

(Problem Definition)

- Given a user set \mathcal{U} and an item set \mathcal{I} , for each user $u \in \mathcal{U}$ who has liked/clicked/viewed an item set $\mathcal{I}_u^+ \subseteq \mathcal{I}$, we aim to recommend a ranked list of items from \mathcal{I}_u^- that are of interests to the user.
- The connectivity information of the graph \Rightarrow alleviating the cold-start problem for CF.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

1. Introduction

2. Definitions

3. Proposed Model

4. Experiments

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

2. Definitions

Def. 2.1 (BipartiteGraph)

- $\mathcal{B} = {\mathcal{U}, \mathcal{I}, \mathcal{E}}$: Bipartite user-item graph with N vertices and E edges
- ${\mathcal U}$, ${\mathcal I}$: disjoint vertex sets
- $\forall e \in \mathcal{E}$ has the form e = (u, i) where $u \in \mathcal{U}$ and $i \in \mathcal{I}$ and denotes that user u has interacted with item i in the training set.

Figure: User-item bipartite graph ${\mathcal B}$ with edges representing observed user-item interactions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2. Definitions

Def. 2.2 (Implicit Feedback Matrix)

 $\mathbf{R}_{r,j} = \begin{cases} 1, & \text{if } (u_r, i_j) \text{ interaction is observed.} \\ 0, & \text{otherwise.} \end{cases}, \quad \mathbf{R} : |\mathcal{U}| \times |\mathcal{I}| \text{ matrix.} \end{cases}$ (1)

Def. 2.3 (Adjacent Matrix)

$$\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{R} \\ \mathbf{R}^{T} & \mathbf{0} \end{bmatrix} \quad , \quad \mathbf{A} : N \times N \text{ matrix.}$$

(ロ)、

2. Definitions

Def. 2.4 (Laplacian Matrix) The random walk laplacian matrix L is

 $\mathbf{L} = \mathbf{I} \mathbf{\hat{D}}^{-1} \mathbf{A}$

, where **D** is the $N \times N$ diagonal degree matrix defined as $\mathbf{D}_{nn} = \sum_{i} \mathbf{A}_{n,i}$.

Def. 3.1 (Graph Signal) Given any graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$, where \mathcal{V} and \mathcal{E} are a vertex and an edge set, respectively, a graph signal is defined as a state vector $\mathbf{x} \in \mathbb{R}^{|\mathcal{V}| \times 1}$ over all vertices in the graph, where x_j is the j-th value of \mathbf{x} observed at the j-th vertex of \mathcal{G} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

1. Introduction

2. Definitions

3. Proposed Model

4. Experiments

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

[Spectral Collaborative Filtering]

- Graph fourier transform on a bipartite graph ${\cal B}$
- Spectral convolution filter on vertices (users and items)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Polynomial approximation
- Multiple spectral convolution layers

We assume that a graph signal $\mathbf{x} \in \mathbb{R}^{|\mathcal{V}| \times 1}$ is observed on a graph \mathcal{G} Graph fourier transform and its inverse on \mathcal{G} :

$$\hat{x}(l) = \sum_{j=0}^{N-1} x(j) \mu_l(j)$$
 and $x(j) = \sum_{l=0}^{N-1} \hat{x}(l) \mu_l(j)$,

,where μ_l denotes the *l*-th eigenvector of **L** ; $\hat{\mathbf{x}}$ represents a graph signal which has been transformed into the spectral domain.

Matrix form of Graph fourier transform :

 $\hat{\mathbf{x}} = \mathbf{U}^T \mathbf{x}$ and $\mathbf{x} = \mathbf{U} \hat{\mathbf{x}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

,where $\mathbf{U} = \{\mu_0, \mu_1, \cdots, \mu_l, \cdots, \mu_{N-1}\}$ are eigenvectors of \mathbf{L} .

Two types of graph signals for a bipartite graph \mathcal{B} $\mathbf{x}^{u} \in \mathbb{R}^{|\mathcal{U}| \times 1}$ and $\mathbf{x}^{i} \in \mathbb{R}^{|\mathcal{I}| \times 1}$, associated with user and item vertices.

$$\begin{bmatrix} \hat{\mathbf{x}}^{u} \\ \hat{\mathbf{x}}^{i} \end{bmatrix} = \mathbf{U}^{\mathcal{T}} \begin{bmatrix} \mathbf{x}^{u} \\ \mathbf{x}^{i} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{x}^{u} \\ \mathbf{x}^{i} \end{bmatrix} = \mathbf{U} \begin{bmatrix} \hat{\mathbf{x}}^{u} \\ \hat{\mathbf{x}}^{i} \end{bmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spectral Convolution Filtering

Convolution filter, parameterized by $\theta \in \mathbb{R}^N$, as $g_{\theta}(\Lambda) = diag([\theta_0 \lambda_0, \theta_1 \lambda_1, \cdots \theta_{N-1} \lambda_{N-1}])$:

$$\begin{bmatrix} \mathbf{x}_{new}^{u} \\ \mathbf{x}_{new}^{i} \end{bmatrix} = \mathbf{U}g_{\theta}(\mathbf{\Lambda}) \begin{bmatrix} \mathbf{\hat{x}}^{u} \\ \mathbf{\hat{x}}^{i} \end{bmatrix} = \mathbf{U}g_{\theta}(\mathbf{\Lambda})\mathbf{U}^{\mathsf{T}} \begin{bmatrix} \mathbf{x}^{u} \\ \mathbf{x}^{i} \end{bmatrix}$$

,where $\Lambda = \{\lambda_0, \lambda_1, \cdots, \lambda_{N-1}\}$ denotes eigenvalues of the graph laplacian matrix **L**.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Learning complexity of the filter is $\mathcal{O}(N)$.
- We can approximate the convolution filters by using first *P* polynomials as the following:

$$g_ heta(\Lambda) pprox \sum_{p=0}^P heta_p^{'} \Lambda^p.$$

[Polynomial Approximation.]

The set of all convolution filters

 $\mathcal{S}_{g} = \{g_{\theta}(\Lambda) = diag([\theta_{0}\lambda_{0}, \theta_{1}\lambda_{1}, \cdots \theta_{N-1}\lambda_{N-1}]), \theta \in \mathbb{R}^{N}\} \text{ is equal to}$ the set of finite-order polynomials $\mathcal{S}_{h} = \{h_{\theta'}(\Lambda) = \sum_{\rho=0}^{N-1} \theta_{\rho}^{'}\Lambda^{\rho}, \theta^{'} \in \mathbb{R}^{N}\}.$

We limit the order of the polynomial, P, to 1

$$\begin{bmatrix} \mathbf{x}_{new}^{u} \\ \mathbf{x}_{new}^{i} \end{bmatrix} = (\theta_{0}^{`} \mathbf{U} \mathbf{U}^{T} + \theta_{1}^{`} \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{T}) \begin{bmatrix} \mathbf{x}^{u} \\ \mathbf{x}^{i} \end{bmatrix}.$$

By setting $\theta_{0}^{'}=\theta_{1}^{'}=\theta^{'}$, where $\theta^{'}$ is a scalar :

$$\begin{bmatrix} \mathbf{x}_{new}^{u} \\ \mathbf{x}_{new}^{i} \end{bmatrix} = \theta^{i} (\mathbf{U}\mathbf{U}^{T} + \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{T}) \begin{bmatrix} \mathbf{x}^{u} \\ \mathbf{x}^{i} \end{bmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spectral convolution operation

• General version (C-dimensional graph signals)

$$sp(:; \mathbf{U}, \mathbf{\Lambda}, \mathbf{\Theta}^{`}) \equiv \begin{bmatrix} \mathbf{X}_{new}^{u} \\ \mathbf{X}_{new}^{i} \end{bmatrix} = \sigma(\mathbf{U}\mathbf{U}^{T} + \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{T}) \begin{bmatrix} \mathbf{X}^{u} \\ \mathbf{X}^{i} \end{bmatrix} \mathbf{\Theta}^{`})$$
, where $\mathbf{X}^{u} \in \mathbb{R}^{|\mathcal{U}| \times C}$, $\mathbf{X}^{i} \in \mathbb{R}^{|\mathcal{I}| \times C}$ and $\mathbf{\Theta} \in \mathbb{R}^{C \times F}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Spectral Collaborative Filtering (SpectralCF)

• K-layered deep spectralCF

$$\begin{bmatrix} \mathbf{X}_{K}^{u} \\ \mathbf{X}_{K}^{i} \end{bmatrix} = sp(\cdots sp(\begin{bmatrix} \mathbf{X}_{0}^{u} \\ \mathbf{X}_{0}^{i} \end{bmatrix}; \mathbf{U}, \mathbf{\Lambda}, \mathbf{\Theta}_{0}^{i}) \cdots; \mathbf{U}, \mathbf{\Lambda}, \mathbf{\Theta}_{K-1}^{i})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We concatenate them into our final latent factors .

$$\mathbf{V}^{u} = [\mathbf{X}_{0}^{u}, \mathbf{X}_{1}^{u}, \cdots, \mathbf{X}_{K}^{u}] \quad \text{and} \quad \mathbf{V}^{i} = [\mathbf{X}_{0}^{i}, \mathbf{X}_{1}^{i}, \cdots, \mathbf{X}_{K}^{i}]$$

where $\mathbf{V}^{u} \in \mathbb{R}^{|\mathcal{U}| \times (C + KF)}$ and $\mathbf{V}^{i} \in \mathbb{R}^{|\mathcal{I}| \times (C + KF)}$.

Optimization and Prediction

• BPR loss

$$\mathcal{L} = \arg\min_{\mathbf{V}^{u}, \mathbf{V}^{i}} \sum_{(r, j, j^{i}) \in \mathcal{D}} - \ln\sigma(\mathbf{v}_{r}^{uT} \mathbf{v}_{j}^{i} - \mathbf{v}_{r}^{uT} \mathbf{v}_{j^{i}}^{i} + \lambda_{reg}(||\mathbf{V}^{u}||_{2}^{2} + ||\mathbf{V}^{i}||_{2}^{2})$$

where \mathcal{D} is generated as : $\mathcal{D} = \{(r, j, j^{'}) \mid r \in \mathcal{U} \land j \in \mathcal{I}_{i}^{+} \land j^{'} \in \mathcal{I}_{i}^{-}\}$

- RMSprop
- The final item recommendation for a user *r* is given according to the ranking :

$$r: j_1 \gg j_2 \gg \cdots \gg j_n \Rightarrow v_r^{uT} v_{j_1}^i > v_r^{uT} v_{j_2}^i > \cdots > v_r^{uT} v_{j_n}^i$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algorithm 1: SpectralCF

	Input: Training set: $\mathcal{D} := \{(r, j, j') r \in \mathcal{U} \land j \in I_i^+ \land j' \subseteq I_i^-\},\$						
	number of epochs E , batch size B , number of layers K ,						
	dimension of latent factors C , number of filters F ,						
	regularization term λ_{reg} , learning rate λ , laplacian matrix L						
	and its corresponding eigenvectors U and eigenvalues Λ .						
	Output: Model's parameter set: $\Psi = \{\Theta'_0, \Theta'_1, \dots, \Theta'_{K-1}, X^u_0, X^i_0\}$.						
1	Randomly initialize X_0^u and X_0^i from a Gaussian distribution						
	N(0.01, 0.02);						
2	$e \text{ for } e = 1, 2, \cdots, E \text{ do}$						
3	Generate the e_{th} batch of size <i>B</i> by uniformly sampling from \mathcal{U} ,						
	I_i^+ and I_i^- ;						
4	for $k = 0, 1, \cdots, K - 1$ do						
5	Calculate X_{k+1}^{u} and X_{k+1}^{i} by using Eq. (10);						
6	end						
7	Concatenate $[X_0^u, X_1^u,, X_K^u]$ into V^u and						
	$[X_{0}^{i}, X_{1}^{i},, X_{K}^{i}]$ into V^{i} ;						
8	Estimate gradients $\frac{\partial \mathcal{L}}{\partial \Psi_e}$ by back propagation;						
9	Update Ψ_{e+1} according to the procedure of RMSprop						
	optimization [29];						
10	end						
11	1 return Ψ_E .						

▶ ▲ 臣 ▶ 臣 ● 의 ۹ ()

1. Introduction

2. Definitions

3. Proposed Model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

4. Experiments

Datasets

- MovieLens-1M(1.0% density)
- HetRec(0.3% density)
- Amazon Instant Video(0.12% density)

Comparative Methods

- CF-based Models : ItemKNN, BPR, eALS, NCF
- Graph-based Models : GNMF, GCM
- Evaluating the performance of the top-M recommendations : MAP@M , Recall@M

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• SpectralCF always outperforms all comparative models regardless of the sparsities of the datasets.

Figure: Performance comparison in terms of recall@M with M

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

• SpectralCF always outperforms all comparative models regardless of the sparsities of the datasets.

Figure: Performance comparison in terms of recall@M with M

• SpectralCFcan better handle cold-start users and provide more reliable recommendations.

	Р	1	2	3	4	5
	BPR	0.021	0.029	0.031	0.034	0.038
		(0.003)	(0.004)	(0.003)	(0.004)	(0.003)
Recall	SpectralCF	0.031	0.039	0.042	0.045	0.051
@20		(0.003)	(0.003)	(0.002)	(0.003)	(0.003)
	Improve-	17.6%	34 5%	35.507	32 197	34.2%
	ment	47.070	J4.J70	55.576	52.470	54.270
	BPR AP SpectralCF	0.014	0.017	0.021	0.024	0.027
		(0.002)	(0.002)	(0.002)	(0.003)	(0.003)
MAP		0.019	0.024	0.028	0.031	0.035
@20		(0.002)	(0.002)	(0.003)	(0.003)	(0.002)
	Improve-	35.7%	41.2%	33.3%	29.2%	29.6%
	ment					

Figure: Performance Comparison in the sparse training sets.

(P : Degrees of sparsity (1 5))