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1. Introduction

(Problem Definition)

• Given a user set U and an item set I, for each user u ∈ U who has
liked/clicked/viewed an item set I+u ⊆ I, we aim to recommend a
ranked list of items from I−u that are of interests to the user.

• The connectivity information of the graph ⇒ alleviating the cold-start
problem for CF.
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2. Definitions

Def. 2.1 (BipartiteGraph)

• B = {U , I, E} : Bipartite user-item graph with N vertices and E edges

• U , I : disjoint vertex sets

• ∀e ∈ E has the form e = (u, i) where u ∈ U and i ∈ I and denotes
that user u has interacted with item i in the training set.

Figure: User-item bipartite graph B with edges representing observed user-item
interactions.



2. Definitions

Def. 2.2 (Implicit Feedback Matrix)

Rr ,j =

{
1, if (ur , ij) interaction is observed.

0, otherwise.
, R : | U | × | I | matrix.

(1)

Def. 2.3 (Adjacent Matrix)

A =

[
0 R
RT 0

]
, A : N × N matrix.



2. Definitions

Def. 2.4 (Laplacian Matrix) The random walk laplacian matrix L is

L = I`D−1A

, where D is the N × N diagonal degree matrix defined as Dnn =
∑

j An,j .

Def. 3.1 ( Graph Signal ) Given any graph G = {V, E} , where V and E
are a vertex and an edge set, respectively, a graph signal is defined as a
state vector x ∈ R|V|×1 over all vertices in the graph, where xj is the j-th
value of x observed at the j-th vertex of G.
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3. Proposed Model

[Spectral Collaborative Filtering]

• Graph fourier transform on a bipartite graph B
• Spectral convolution filter on vertices (users and items)

• Polynomial approximation

• Multiple spectral convolution layers



3. Proposed Model

We assume that a graph signal x ∈ R|V|×1 is observed on a graph G
Graph fourier transform and its inverse on G :

x̂(l) =
N−1∑
j=0

x(j)µl(j) and x(j) =
N−1∑
l=0

x̂(l)µl(j),

,where µl denotes the l-th eigenvector of L ; x̂ represents a graph signal
which has been transformed into the spectral domain.

Matrix form of Graph fourier transform :

x̂ = UTx and x = Ux̂

,where U = {µ0,µ1, · · · ,µl , · · · ,µN−1} are eigenvectors of L.



3. Proposed Model

Two types of graph signals for a bipartite graph B
xu ∈ R|U|×1 and xi ∈ R|I|×1, associated with user and item vertices.[

x̂u

x̂i

]
= UT

[
xu

xi

]
and

[
xu

xi

]
= U

[
x̂u

x̂i

]
.



3. Proposed Model

Spectral Convolution Filtering

Convolution filter, parameterized by θ ∈ RN , as
gθ(Λ) = diag([θ0λ0, θ1λ1, · · · θN−1λN−1]) :[

xunew
xinew

]
= Ugθ(Λ)

[
x̂u

x̂i

]
= Ugθ(Λ)UT

[
xu

xi

]
.

,where Λ = {λ0, λ1, · · · , λN−1} denotes eigenvalues of the graph laplacian
matrix L.



3. Proposed Model

• Learning complexity of the filter is O(N).

• We can approximate the convolution filters by using first P
polynomials as the following:

gθ(Λ) ≈
P∑

p=0

θ‘pΛ
p.

[Polynomial Approximation.]

The set of all convolution filters
Sg = {gθ(Λ) = diag([θ0λ0, θ1λ1, · · · θN−1λN−1]),θ ∈ RN} is equal to

the set of finite-order polynomials Sh = {hθ′ (Λ) =
∑N−1

p=0 θ
‘
pΛ

p,θ‘ ∈ RN}.



3. Proposed Model

We limit the order of the polynomial, P, to 1[
xunew
xinew

]
= (θ‘0UUT + θ‘1UΛUT )

[
xu

xi

]
.

By setting θ‘0 = θ‘1 = θ‘, where θ‘ is a scalar :[
xunew
xinew

]
= θ‘(UUT + UΛUT )

[
xu

xi

]
.



3. Proposed Model

Spectral convolution operation

• General version (C-dimensional graph signals)

sp(:;U,Λ,Θ‘) ≡
[
Xu

new

Xi
new

]
= σ(UUT + UΛUT )

[
Xu

Xi

]
Θ‘)

, where Xu ∈ R|U|×C , Xi ∈ R|I|×C and Θ ∈ RC×F



3. Proposed Model

Spectral Collaborative Filtering (SpectralCF)

• K-layered deep spectralCF[
Xu

K

Xi
K

]
= sp(· · · sp(

[
Xu

0

Xi
0

]
;U,Λ,Θ‘

0) · · · ;U,Λ,Θ‘
K−1)

• We concatenate them into our final latent factors .

Vu = [Xu
0 ,X

u
1 , · · · ,Xu

K ] and Vi = [Xi
0,X

i
1, · · · ,Xi

K ]

where Vu ∈ R|U|×(C+KF ) and Vi ∈ R|I|×(C+KF ).



3. Proposed Model

Optimization and Prediction

• BPR loss

L = arg min
Vu ,Vi

∑
(r ,j ,j ‘)∈D

−lnσ(vuTr vij − vuTr vij ‘ + λreg (||Vu||22 + ||Vi ||22)

where D is generated as : D = {(r , j , j ‘) | r ∈ U ∧ j ∈ I+i ∧ j ‘ ∈ I−i }
• RMSprop

• The final item recommendation for a user r is given according to the
ranking :

r : j1 � j2 � · · · � jn ⇒ vuTr v ij1 > vuTr v ij2 > · · · > vuTr v ijn



3. Proposed Model

Figure: Algorithm of SpectralCF
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4. Experiments

Datasets

• MovieLens-1M(1.0% density)

• HetRec(0.3% density)

• Amazon Instant Video(0.12% density)

Comparative Methods

• CF-based Models : ItemKNN, BPR, eALS, NCF

• Graph-based Models : GNMF, GCM

• Evaluating the performance of the top-M recommendations :
MAP@M , Recall@M



4. Experiments

• SpectralCF always outperforms all comparative models regardless of
the sparsities of the datasets.

Figure: Performance comparison in terms of recall@M with M
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4. Experiments

• SpectralCFcan better handle cold-start users and provide more
reliable recommendations.

Figure: Performance Comparison in the sparse training sets.
(P : Degrees of sparsity (1 5)
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