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Linear Discriminant Analysis

> Let x1,...,xy = X € RV*P denote a set of N samples belonging to C

different classes c € {1,..., C}.

> Let

}:%ZXH mC:NiCZXB

i€c
where Ne = #{i € c}.
» LDA finds a linear combination a' x; s.t. the between class variance is

maximized relative to the within-class variance:

a' Sga
max ————
a alSwa’

(1)

where Sg = XC: Ne(me = X)(me —%) T, Sw= 3% — me)(xi — me) "

c i€c
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Generalization of Linear Discriminant Analysis

» X are the observations of class ¢ and mc is the per-class mean vector.

» LDA finds a linear projection A € R™" r< ps.t.

|ASgAT|
argznax [ASWAT|’ (2

where Sg, Sw are the between, within scatter matrices.

» Ain Eq. (2) can be obtained by the eigenvectors corresponding to the r

largest eigenvalues of

SBe,- = V,'Swe,', i= 17 ceay (3)
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Feature Extraction with Deep Neural Networks

by a Generalized Discriminant Analysis

Stuhlsatz, A., Lippel, J., & Zielke, T. (2012)

IEEE transactions on neural networks and learning systems
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Introduction

> The generalized discriminant analysis (GerDA) is a generalization of the

classical LDA on the basis of DNNs.

» LDA often fails in real-world applications, since a linear mapping A cannot

transform arbitrarily distributed r.v.s into independently Gaussian.
> Main idea

Find nonlinear mapping f: RP — R' s.t.
max trace(S7' Sg),

where St and Sg defined on h = f(x).
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Generalized Discriminant Analysis

GerDA architecture
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Figure : GerDA architecture
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Generalized Discriminant Analysis

> Note that the objective function trace(S7'Sg) overemphasizes large

distances of between-class variation.

> GerDA is fine-tuned by maximizing
trace((S%) ' S%),

where S‘ST = Sy + 5‘,53 and

C
1
S% = W Z N,'Nj X 5,'71' X (m,— — mj)(m,- — mj)T

ij=1

1/|[mi— my||* i i

0 if i=j.
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Visualization Results
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Figure :
test images

Comparison of 2-D mappings obtained using GerDa, t-SNE on the MNIST
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Appendix: Pre-Optimization

» Unsupervised training of a single binary RBM of the ith layer (2 < i< L)

is performed via s.g.d. in the KL divergence

d(P°||P>=; ') : ZPO |og(7(£‘%l))

assumming s := ((V), (h) )T, vV € {0,1}", A € {0,1}"% with
distribution

P> (V; 0" Z exp ( ))
2(6') = Z ( — H(s; @"))

s

given the network parameters ©' := (W, b').
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Appendix: Pre-Optimization

» For binary states,
H(si; @i) = f(vi)TWhi - (bi)Tsi

» Since v!' of an input layer RBM are modeled continuously and

Gaussian-distributed, use quadratic energy function
H(Sl; @1) — %(Vl_bvl)T(Xl)—l(vl_bvl)_(Vl)T(El)—l/Q Wlhl—(bhl)Thl

with diagonal covariance matrix ©*.
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Appendix: Pre-Optimization

» For an output RBM, we use extra visual output units for pre-trainig h to
have maximize asymptotically the discriminant criterion:

> Outputs: v°U!(x) = WPUh(x) + boUt
> Targets: fori=1,..., N,

VN/N: ifyi=c

0 oterwise

> Minimizing MSE between (v°“f(x;))_, and (t), approximates the

maximum of the discriminant criterion.

> Since the output RBM's visual output and hidden stated are modeled

Gaussian-distributed, use an extended energy function

(h— BT (SN (h— b — (V)T WS ~Y/2h
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Deep Linear Discriminant Analysis

Dorfer, M., Kelz, R., & Widmer, G. (2015)

arXiv
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Introduction

» Deep Linear Discriminant Analysis (DeepLDA) learns linearly separable
latent representation in end-to-end fashion.

» Main idea: put LDA on top of a DNN to exploit the properties of classic
LDA (low intra class variability, hight inter-class variablilty, optimal

decision boundaries)

DeepLDA
Latent Space

Objective: Maximize Eigenvalues of

* LDA on last hidden representation.
Linear Discriminant . s
Analysis —»[ Eigenvalue Objective }

|ooooooooooo|1

[©CO0000000000] ( DNN

[CO00000000O0]
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DeepLDA

> We want to produce features that show a low intra-class and high

inter-class variability.
» Denote © as parameters of DNN and C is the number of classes.
» Objective functions:

1
arg([)nax 1 Zv,

i=1

— It could be produce trivial solutions (maximize only the largest

eigenvalue).
» DeepLDA's objective functions:
K
1 . .
argmax — Z vi with {vi,..., v} ={vjlvy < min{vi,...,vc_1}+€}, (4)
o kI

where €>0 is the margin.
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Classification by DeepLDA

» X: training set, H: the topmost hidden representation on X

v

A: LDA projection matrix

» H.= (h{,...,h{): per-class mean hidden representations

v

For test sample x;, compute h; and define distances of h; to the linear

decision hyperplances:
d=h/T" — %diag(l_-ICTT) with T= HAAT,

where T are the decision hyperplane normal vectors.

» The vector of class probabilities for x;:

/
pcf 1+eid
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Experimental Results

Method L Test Error
NIN + Dropout (Lin et al. (2013))  0.47%
Maxout (Goodfellow et al. (2013))  0.45%
DeepCNet(5,60) (Graham (2014))  0.31% (train set translation)

OurNetCCE(LDA)-50k 0.39%
OurNetCCE-50k 0.37%
OurNetCCE-60k 0.34%
DeepLDA-60k 0.32%
OurNetCCE(LDA)-60k 0.30%
DeepLDA-50k 0.29%
DeepLDA-50k(LinSVM) 0.29%

Figure : Comparison of test errors on MNIST
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Max-Mahalanobis Linear Discriminant Analysis Networks

Tianyu Pang, Chao Du, Jun Zhu (2018)

Proceedings of the 35th International Conference on Machine Learning
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Introduction

» For classification problems, DNNs with a softmax classifier are vulnerable

to adversial attacks.
» Objective: design a robust classifier to adversarial attacks

» An adversarial example x* crafted on x satisfies

V) #3(, st X = x| <e

where y(-) denotes the predicted label from classifier, € is the maximal

perturbation.
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Methodology

» Assumption 1: For the p-dimensional random vector x with its class label y,
Ply=i)=m, PXy=1i)=N(u,),

where i€ {1,...,C}, >, m =1 and each conditional Gaussian has the

common X.

> Mahalanobis distance between any two Gaussian i and j defined as
_ 1
A== ) TS (i — )]

» W.L.O.G., assume X is nonsingular. Thus £ = QQ' where Q is a

lower-triangular matrix.
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Methodology

v

Set x= Q '(x—[i) where i =, i/ C.

> Assumption 2: For the p-dimensional random vector x with its class label y,
P(y: I) = T, P()}ly: I) :N(ﬂia I)a

where ie {1,...,C}, > ,mi=1and ), 1i=0.

< ~ ~ ~ ~\11
Note that Aj; = [(& — i) " (A — )]z = Qi

\{

» From now on, denote x < X, i < fi; and Ajj < Ajj.
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Methodology

» Denote \;j(x) = 0 as the decision boundary between class i and j obtained
by LDA.

> Under the assumption 2, we randomly sample a normal example of class i
as x(jy i.e., x(jy ~ N (i, I), and denote its nearest adversarial as X(; ;) Which

is on the nearest decision boundary \;;(x) = 0:
y(x@) =i, j/(X?i)) =J

> Define d(;j = d(x, X(i )
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Methodology

> Theorem 1. If 7; = 7,

2 A 1 A
Eldip] = \/;exp (— 8") + 50 {1 — 2@( _ 211)] ,

where ®(-) is the normal c.d.f.

» Robustness of the classifier on all the attacks can be measured by

RB = . E[d,.
"vf€(rr1],l<r.]<,C} (i)

> By Theorem 1, |E[d(;]/Ai; — 1/2| monotonically decreases to 0 w.r.t.

Ajj, hence we can approximate RB as

RB ~ @ = mln A,‘J/Q
hJ
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Methodology

» Theorem 2. Assume that 3. | u; = 0 and max; ||ui]|3 = L. Then we have

=5 LC
<=
RB < 3C—1)

The equality holds iff

L, i=j
i = (5)
L/(1 - C), otherwise,

where i,j € {1,...,C}.
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Methodology

» Denote p* as any set of means that satisfy the optimal condition (5).

> With the previous results, LDA classifier have the best robustness if its

input distribution is
Ply=i)=m, P(xly=i)=N(,h, i=1,...,C

» But, in general, the mixture of Gaussian assumption does not hold in the

input space.
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Max-Mahalanobis LDA Networks

» By exploring the power for DNNs, we propose the Max-Mahalanobis
linear discriminant analysis (MM-LDA) network, which consists of

> a nonlinear transformation network x — zg parametrized by 0;

> applied the MM-LDA procedure on zy.
» Given a feautre vector zy, the conditional distribution of labels is

TN (20| i, 1)
Sy miN (zolpr, 1)

» Finally, 0 are trained by using cross-entropy loss function.

P(y = kzo) =
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Max-Mahalanobis LDA Networks

Algorithm 2 The training phase for the MM-LDA network

Input: The model zg(x), the square norm C' of Gaussian
means, the training dataset D = { (4, ¥;) }ie[n]-
Initialization: Initialize 0 as 0, the training step as s =
0. Let p = dim(z), € be the learning rate variable.
Get u* = GenerateOptMeans(C, p, L) for the MMD.
while not converged do
Sample a mini-batch of training data D,,, from D,
Calculate the objective

1

Fii = ]
m

(

Z Lyvv(i, Yo, 1*),

2i,Yi)EDm

Update parameters 05y < 05 — eV LY,
Sets < s+ 1.

end while

Return: The parameters Oypy = 6.
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GerDA (2012)

Experiment Results

DeepLDA (2015)

Max-Mahalanobis LDA (2018)

Perturbation Model MNIST CIFAR-10
FGSM | BIM | ILCM | JSMA | FGSM | BIM | ILCM | JSMA
Resnet-32 (SR) 93.6 879 | 948 929 20.0 55 0.2 65.6
0.04 Resnet-32 (SR) + SAT 86.7 68.5 98.4 - 24.4 7.0 0.4 -
: Resnet-32 (SR) + HAT 88.7 963 | 99.8 - 30.3 53 1.3 -
Resnet-32 (MM-LDA) 99.2 99.2 | 99.0 99.1 91.3 91.2 | 70.0 91.2
Resnet-32 (SR) 28.1 34 20.9 56.0 10.2 4.1 0.3 20.5
0.12 Resnet-32 (SR) + SAT 40.5 8.7 88.8 - 88.2 6.9 0.1 -
. Resnet-32 (SR) + HAT | 40.3 40.1 92.6 - 441 8.7 0.0 -
Resnet-32 (MM-LDA) 99.3 98.6 | 99.6 99.7 90.7 90.1 42.5 91.1
Resnet-32 (SR) 15.5 0.3 1.7 25.6 10.7 42 0.6 11.5
0.20 Resnet-32 (SR) + SAT 17.3 1.1 69.4 - 91.7 9.4 0.0 -
i Resnet-32 (SR) + HAT 10.1 10.5 46.1 - 40.7 6.0 0.2 -
Resnet-32 (MM-LDA) 97.5 97.3 | 96.6 99.6 89.5 89.7 | 31.2 91.8
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