Generation Meets Recommendation: Proposing Novel Items for Groups of Users Vinh Vo Thanh et al. (2018)

June Kim

2019.01.15

- Introduction
- Problem Formulation
- Methodology
- Results

- Introduction
- 2 Problem Formulation
- Methodology
- Results

Recommender Systems for Makers

Proposing new items that could be created to satisfy users

For item makers, important questions include:

- What set of products would appeal to a wide range of people?
- Who would like those products?
- How many products should you make?

Overview

- Shared latent space learned from user-item rating data
- Generating plausible K items that appeal to different groups of users
- Generating item features via the decoder.

- Introduction
- Problem Formulation
- Methodology
- Results

Problem Formulation

"Cover"
$$c(u,s) = \begin{cases} 1 & \text{if } r(u,s) > \tau \text{ (above threshold)} \\ 0 & \text{otherwise} \end{cases}$$

Problem Formulation

Re-Formalizing with a Latent Space

The Maximum Coverage Novel Itemset Problem

For given $\hat{r}(z_u, z_s)$ and $\mathcal{D} = \{d^{(k)} = (u, i, x_i, r_{ui})^{(k)}\}_{k=1}^{|D|}$, seek the latent representation z_v and decoded feature $x_v = g_s(z_v)$ for novel covering items $v \in \mathcal{V}$ which satisfying :

$$\operatorname{argmax}_{\mathcal{V}} \sum_{u \in \mathcal{U}} \sum_{v \in \mathcal{V}} \hat{r}(z_u, z_v) c_{uv}$$

such that
$$\sum_{v \in \mathcal{V}} c_{uv} = 1$$
 and $|\mathcal{V}| = k$

- $ullet z_s \in \mathcal{Z} \subseteq \mathbb{R}^{d_z}$: latent vector of item $s \in \mathcal{S}$
- $x_s \in \mathcal{X} \subseteq \mathbb{R}^{d_x}$: observed feature of item
- $z_u \in \mathcal{Z}$: latent vector of user
- $\hat{r}(z_u, z_s)$: pre-specified rating function (e.g. $z_u^T z_s$)

- Introduction
- Problem Formulation
- Methodology
- Results

Learning the Latent Space

- Learning $\mathcal Z$ given $\hat r(z_u,z_s)$ and $\mathcal D$
- Learning encoder $f_s(x;\phi): \mathcal{X} \to \mathcal{Z}$ and decoder $g_s(z;\theta): \mathcal{Z} \to \mathcal{X}$
- Assume $\hat{r}(z_u, z_v) = f_r(z_u^T, z_s)$

 $\mathcal{L} = \text{Rating Loss} + \text{Reconstruction Loss} + \text{Regularizer}$ $= \mathcal{L}_r(\theta) + \lambda_1 \mathcal{L}_g(\phi) + \lambda_2 \mathcal{R}(\theta, \phi)$

Linear Model

Assume both f_s and g_s are linear functions

$$z_s = f_s(x_s) = M_\theta x_s$$
$$x_s = g_s(z_s) = M_\phi z_s$$

Rating loss:

$$egin{aligned} \mathcal{L}_r(heta) &= -\sum_{d \in \mathcal{D}} r_{ui} \log ilde{r}_{ui} + (1-r_{ui}) \log (1- ilde{r}_{ui}) \ &(ilde{r}_{ui} = \hat{r}(z_u, z_i) = \sigma(z_u^T, z_i) = \sigma(z_u^T M_{ heta} x_i)) \end{aligned}$$

Reconstruction loss:

$$egin{aligned} \mathcal{L}_{g}(\phi) &= -\sum_{d \in \mathcal{D}} \sum_{j} x_{ij} \log ilde{x}_{ij} + (1 - x_{ij}) \log \left(1 - ilde{x}_{ij}
ight) \ & (ilde{x}_{i} = g_{s}(z_{i})) \end{aligned}$$

Regularizer:

$$\mathcal{R}(\theta,\phi) = ||M_{\theta}||_{F} + ||M_{\phi}||_{F}$$

- ullet Want to find parameter $heta = \operatorname{argmax}_{ heta} \mathbb{E}_{ extit{data}}[\log p_{ heta}(d)]$
- Since $\log p_{\theta}(d) = \mathbb{E}_{p(z_i)}[p(r_{ui}|z_u,z_i)p_{\theta}(x_i|g_s(z_i))]$ is intractable, introduce $q_{\phi}(z_i|x_i)$ and perform inference by maximizing ELBO

$$\begin{split} \log p_{\theta}(d) & \geq \ell(\theta, \phi; d) = \mathbb{E}_{q(z_i | f_{\phi}(x_i))}[\log p(r_{ui} | z_u, z_i)] & \text{(Rating loss)} \\ & + \mathbb{E}_{q(z_i | f_{\phi}(x_i))}[\log p(x_i | z_i)] & \text{(Reconstruction loss)} \\ & - \mathbb{D}_{KL}[q_{\phi}(z_i | x_i) || p(z_i)] & \text{(Regularizer)} \end{split}$$

$$q_{\phi}(z_i|x_i) = \mathcal{N}(f_s^{\mu}(x_i), ext{diag}(\exp(f_s^{\sigma}(x_i)))) \ \log p(x_i|z_i) = \sum x_{ij} \log ilde{x}_{ij} + (1-x_{ij}) \log (1- ilde{x}_{ij})$$

Latent Space Searching

- Using greedy algorithm to find novel items that possess maximum coverage
 - ① Discretize $\mathcal Z$ to obtain candidate items: sample T candidate points from $p(z_s|\mathcal Z_{\mathcal I})$ train a Gaussian Mixture Model to learn $\mathcal Z_{\mathcal I}$ is the latent representation of the observed items
 - Successively pick the candidate item that attains the maximum total rating given by uncovered users until K samples are selected

- X Existing Item
- + Candidate Novel Item

- Introduction
- 2 Problem Formulation
- Methodology
- Results

Quantitative Results

- Construct synthetic data with 5000 users split into evenly among K groups
- Sample N_g observed items $x_i \in \mathbb{R}^{20}$ from MN centered at ideal item for that group
- Observed items were rated differently depending on whether the user was from the same group or otherwise

Quantitative Results

Qualitative Results: Generating Abstract Art

MART dataset comprises 500 art pieces by professional artists and 10 thousand ratings by 100 people

Qualitative Results: Generating Movielens Tag Genomes

Movielens Tag Genome and MovieLens-1M datasets contains 3952 movies, 6040 users and 1 million ratings. Each genome describes a given movie via 1128 tags with relevance scores between [0, 1]