Causal Embeddings for Recommendation

Presenter: YC Choi 2019.01.15

Contents

Abstract

- We are interested in finding the optimal treatment recommendation policy that maximizes the reward with respect to the control recommendation policy for each user
- known as the Individual Treatment Effect(ITE)

Definition and notation

Symbol	Definition
u_i	A user of the recommendation system
p_i	A product which the system can recommend
π_x	A recommendation policy (eq. 1)
π_c	The control recommendation policy. This represents
	the recommendation system used to create the training dataset.
π_t	The treatment recommendation policy. This represents the updated recommendation system.
π^{rand}	The fully random recommendation policy that shows any product with equal probability to all users.
r_{ij}	The true reward for recommending a product p_j to user u_i
y_{ij}	The observed reward for recommending product p_j to user u_i in the data. By comparison with r_{ij} , its value can be unknown.
R^{π_x}	The total reward for policy π_x (eq. 2)
$ITE_{ij}^{\pi_x}$	The difference between the reward for current and control policy (eq. 3)
p_i^*	The product with the highest reward for user u_i (eq. 6)
π^*	The best incremental recommendation policy (eq. 4)
S_c	A large set of training samples collected under the control recommendation policy
S_t	A smaller set of samples taken under a full- randomized recommendation policy

Definition and notation

- ▶ $p_j \sim \pi_x(.|u_j)$: a probability for the user u_i to be exposed to the recommendation of product p_i
- $ightharpoonup r_{ij} \sim r(.|u_i,p_j)$: the true reward for recommending product p_j to user u_i
- $y_{ij} = r_{ij}\pi_x(p_j|u_j)$: the observed reward for the pair i,j of user-product according to the logging policy π_x

Definition and notation

- $R^{\pi_X} = \sum_{i,j} r_{ij} \pi_X(p_j, u_i) p(u_i) = \sum_{i,j} y_{i,j} p(u_i) = \sum_{i,j} R_{ij}$: the reward associated with a policy π_X
- ightharpoonup $ITE_{ii}^{\pi_{\mathsf{x}}} = R_{ii}^{\pi_{\mathsf{x}}} R_{ii}^{\pi_{\mathsf{c}}}$: Individual treatment effect
- $lacktriangledown \pi^* = rg \max_{\pi_{\mathsf{X}}} \mathit{ITE}^{\pi_{\mathsf{X}}} \text{ where } \mathit{ITE}^{\pi_{\mathsf{X}}} = \sum_{i,j} \mathit{ITE}^{\pi_{\mathsf{X}}}_{ij}$

Lemma.1) For any control policy π_c , the best incremental policy π^* is the policy that shows deterministically to each user the product with the highest associated reward.

Inverse Propensity Scoring

- ▶ In order to find the optimal policy p_i^* , we need to find for each user u_i the product with the highest personalized reward r_i^* .
- ▶ In practice, we do not observe directly r_{ij} but $y_{ij} \sim r_{ij}\pi_{\mathsf{x}}(p_j|u_j)$
- ▶ (IPS) Predict unobserved reward $\hat{r_{ij}} \approx \frac{y_{ij}}{\pi_c(p_j,u_i)}$
- ▶ Products with low probability under the logging policy π_c will tend to have higher predicted reward.
- One potential solution is then to use the biased data from the current π_c and learn to predict the outcomes under a randomized policy.

Inverse Propensity Scoring

- ▶ But Using uniform exposure recommendations (denoted as π^{rand}) is impossible in practice due to the resulting low recommendation quality.
- The proposed method will use randomized policy and control recommendation policy together.

The proposed method

We assume the existence of two training samples $S_c = \{(u_i, p_j^c, y_{ij}^c)\}_{i=1}^{M_c} : \text{very large sample of exposed users with outcomes collected with the control recommendation policy} \\ S_t = \{(u_i, p_j^t, y_{ij}^t)\}_{i=1}^{M_t} : \text{much smaller sample of exposed users with outcomes collected with the fully randomized recommendation policy}$

The proposed method

- ► The authors assume that both the expected factual control and treatment rewards can be approximated as linear predictors over the fixed user representation *u_i*
- \triangleright $y_{ii}^c \approx <\theta_i^c, u_i>$
- $y_{ij}^t \approx <\theta_j^t, u_i>$ where θ_i^c, θ_j^t are the control/treatment vectorial representations of product j.

The proposed method

▶ $I_{ij}^t = L(<\theta_j^t, u_i>, y_{ij}^t) + \Omega(\theta_j^t)$ where L is an arbitrary loss function and $\Omega(.)$ is a regularization term over the weights of the model. Switching to matrix notation,

$$L_t = \sum_{(i,j,y_{ij}) \in S_t} I_{ij}^t = L(U\Theta_t, Y_t) + \Omega(\Theta_t)$$

Using same way

$$L_c = L(U\Theta_c, Y_c) + \Omega(\Theta_c) + \Omega(\Theta_t - \Theta_c)$$

- $L_{CausE}^{prod} = L(U\Theta_t, Y_t) + \Omega(\Theta_t) + L_c = L(U\Theta_c, Y_c) + \Omega(\Theta_c) + \Omega(\Theta_t \Theta_c)$
- $\blacktriangleright \ \, L_{\textit{CausE}} = L(\Gamma_t \Theta_t, Y_t) + \Omega(\Gamma_t, \Theta_t) + L_c = L(\Gamma_c \Theta_c, Y_c) + \Omega(\Gamma_c, \Theta_c) + \Omega(\Theta_t \Theta_c)$

Algorithm

```
Algorithm 1: CausE Algorithm: Causal Embeddings For Rec-
  ommendations
   Input: Mini-batches of S_c = \{(u_i^c, p_i^c, \delta_{ij}^c)\}_{i=1}^{M_c} and
               S_t = \{(u_i^t, p_j^t, \delta_{ij}^t)\}_{i=1}^{M_t}, regularization parameters
               \lambda_t, \lambda_c for the two joint tasks L_t and L_c and \lambda_{dist} the
               regularization parameter for the discrepancy
               between the two representations for products and
               users, learning rate η
   Output: \Gamma_t, \Gamma_c, \Theta_t, \Theta_c - User and Product Control and
               Treatment Matrices
 1 Random initialization of Γ<sub>t</sub>, Γ<sub>c</sub>, Θ<sub>t</sub>, Θ<sub>c</sub>;
2 while not converged do
        Read batch of training samples;
        for each training sample s in the batch: do
              if s \in S_c then
                  Lookup the product index j and user index i in
                    \Theta_c, \Gamma_c and
                  Update control product vector:
7
                    \theta_{i}^{c} \leftarrow \theta_{i}^{c} - \eta \nabla L_{CausE}^{prod}
                  Update control user vector: \gamma_i^c \leftarrow \gamma_i^c - \eta \nabla L_{Caus}^{user}
              end
              if s \in S_t then
10
                  Lookup the product index j and user index i in
11
                    \Theta_t, \Gamma_t and
                  Update treatment product vector:
12
                    \theta_i^c \leftarrow \theta_i^c - \eta \nabla L_{CausE}^{prod}
13
                  Update treatment user vector:
14
              end
         end
15
17 return \Gamma_t, \Gamma_c, \Theta_t, \Theta_c
```

Experiments

- 1. MovieLens10M
 - 71567 unique users, 10677 unique products.
- 2. Netflix
 - 480189 unique users, 17770 unique products.

Experiments

Method	MovieLens10M (SKEW)			Netflix (SKEW)		
	MSE lift	NLL lift	AUC	MSE lift	NLL lift	AUC
BPR-no	_	_	0.693(±0.001)	_	_	0.665(±0.001)
BPR-blend	_	-	$0.711(\pm 0.001)$	_	_	0.671(±0.001)
SP2V-no	+3.94%(±0.04)	+4.50%(±0.04)	0.757(±0.001)	+10.82%(±0.02)	+10.19%(±0.01)	0.752(±0.002)
SP2V-blend	+4.37%(±0.04)	+5.01%(±0.05)	0.768(±0.001)	+12.82%(±0.02)	+11.54%(±0.02)	0.764(±0.003)
SP2V-test	+2.45%(±0.02)	+3.56%(±0.02)	0.741(±0.001)	+05.67%(±0.02)	+06.23%(±0.02)	0.739(±0.004)
WSP2V-no	+5.66%(±0.03)	+7.44%(±0.03)	$0.786(\pm0.001)$	+13.52%(±0.01)	+13.11%(±0.01)	0.779(±0.001)
WSP2V-blend	+6.14%(±0.03)	+8.05%(±0.03)	$0.792(\pm 0.001)$	+14.72%(±0.02)	+14.23%(±0.02)	0.782(±0.002)
BN-blend	-	-	0.794(±0.001)	-	-	0.785(±0.001)
CausE-avg	+12.67%(±0.09)	+15.15%(±0.08)	0.804(±0.001)	+15.62%(±0.02)	+15.21%(±0.02)	0.799(±0.002)
CausE-prod-T	+07.46%(±0.08)	+10.44%(±0.09)	0.779(±0.001)	+13.97%(±0.02)	+13.52%(±0.02)	0.789(±0.003)
CausE-prod-C	+15.48%(±0.09)	+19.12%(±0.08)	0.814(±0.001)	+17.82%(±0.02)	+17.19%(±0.02)	0.821(±0.003

Table 2: Results for MovieLens10M and Netflix on the Skewed (SKEW) test datasets. All three versions of the CausE algorithm outperform both the standard and the IPS-weighted causal factorization methods, with CausE-avg and CausE-prod-C also out-performing BanditNet. We can observe that our best approach CausE-prod-C outperforms the best competing approaches WSP2V-blend by a large margin (21% MSE and 20% NLL lifts on the MovieLens10M dataset) and BN-blend (5% AUC lift on MovieLens10M).