Origin of Native FTRL-Proximal

Gyuseung Baek

January 15, 2019

Native FTRL-Proximal

Data	FTRL-Proximal	RDA	FOBOS
BOOKS	0.874 (0.081)	0.878 (0.079)	0.877 (0.382)
DVD	0.884 (0.078)	0.886 (0.075)	0.887 (0.354)
ELECTRONICS	0.916 (0.114)	0.919 (0.113)	0.918 (0.399)
KITCHEN	0.931 (0.129)	0.934 (0.130)	0.933 (0.414)
NEWS	0.989 (0.052)	0.991 (0.054)	0.990 (0.194)
RCV1	0.991 (0.319)	0.991 (0.360)	0.991 (0.488)
WEB SEARCH ADS	0.832 (0.615)	0.831 (0.632)	0.832 (0.849)

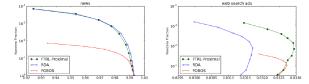


Figure: Table 2, Figure 1, 2 of H. B. McMahan, 2011

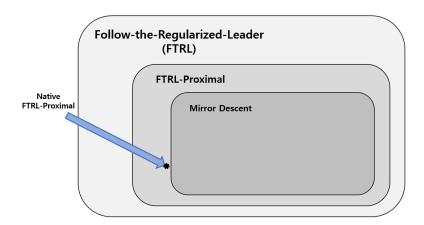
	Num. Non-Zero's	AucLoss Detriment
FTRL-Proximal	baseline	baseline
RDA	+3%	0.6%
FOBOS	+38%	0.0%
OGD-Count	+216%	0.0%

Figure: Table 1 of H. B. McMahan et al., 2013

Native FTRL-Proximal

$$x_{t+1} = \operatorname*{argmin}_{x} g_{1:t} \cdot x + t \lambda ||x||_{1} + \frac{1}{2} \sum_{s=1}^{t} ||Q_{s}^{\frac{1}{2}} (x - x_{s})||_{2}^{2}$$

Introduction



Online Convex Optimization(OCO)

- At each round $t \in \{1, 2, \dots\}$, select a point $x_t \in \mathbb{R}^n$
- From convex loss function f_t , observe the t time's loss $f_t(x_t)$
- Regret of the algorithm $\{x_t\}$ at the round T at a given point x*

$$Regret_{T}(x^{*}, \{f_{t}\}) \equiv \sum_{t=1}^{T} f_{t}(x_{t}) - \sum_{t=1}^{T} f_{t}(x^{*}) := f_{1:t}(x_{t}) - f_{1:t}(x^{*})$$

If $\{f_t\}$ and T are clear then we omit them.

 Goal: if our searching space is X, then find the algorithm which minimizes the regret on the set X:

$$Regret_{\mathcal{T}}(\mathcal{X}) \equiv \sup_{x^* \in \mathcal{X}} Regret_{\mathcal{T}}(x^*)$$

Basic Convex Optimization Definitions

- Assume \mathcal{X} is convex set, $\psi: \mathcal{X} \to \mathbb{R} \bigcup \{\infty\}$ is convex function $dom\psi \equiv \{x : \psi(x) < \infty\}$
- g is a subgradient of ψ at x if

$$\forall y \in \mathbb{R}^n, \psi(y) \ge \psi(x) + g \cdot (y - x)$$

 $\partial \psi(x)$: Set of subgradients of ψ at x *Note* If $x \in \text{int}(\text{dom}\psi)$, then $\partial \psi(x) \neq \emptyset$.

• Let $||\cdot||$ be a norm on \mathcal{X} . $\psi: \mathcal{X} \to \mathbb{R} \bigcup \{\infty\}$ is σ -strongly convex function w.r.t. a norm $||\cdot||$ if for all $x, y \in cX$,

$$\forall g \in \partial \psi(x), \psi(y) \ge \psi(x) + g \cdot (y - x) + \frac{\sigma}{2} ||y - x||^2$$

Basic Convex Optimization Definitions

- \mathcal{X}^* is a dual space correspond to \mathcal{X} if $\mathcal{X}^* = \{\phi : \mathcal{X} \to \mathbb{R} | \phi \text{ is linear.} \}$.
- For a norm $||\cdot||$, the dual norm $||\cdot||_*$ is a norm on \mathcal{X}^* . It is given by

$$||\phi||_* \equiv \sup_{x:||x|| \le 1} \phi(x)$$

• $\forall g \in \partial \psi(x), x \in \mathcal{X}, \psi$: convex $, g(x) \equiv g \cdot x \in \mathcal{X}^*$.

Follow-the-Regularized-Leader(FTRL)

For convinience, let $||g(\cdot)||_* = ||g||_*$.

Linearization

- Computing Regret_T(X, {f_t}) is hard.
 In general, computing the upper bound of Regret_T(X).
- Let g_t be a subgradient of f_t at x_t . Let $\bar{f}_t(x) = g_t \cdot x$. Then

$$Regret_T(\mathcal{X}, \{f_t\}) \leq Regret_T(\mathcal{X}, \{\bar{f}_t\})$$

since
$$\forall x^* \in \mathcal{X}, f_t(x^*) - f_t(x_t) \ge g_t(x^* - x_t) = \overline{f_t}(x^*) - \overline{f_t}(x_t)$$
.

• Linearization help to compute closed form of x_t .

Follow-the-Leader

- $x_{t+1} = \operatorname{argmin}_{x \in \mathcal{X}} f_{1:t}(x)$
- Simplest online algorithm
- Similar to empirical risk minimization(ERM)
- Impractical.

Follow-the-Regularized-Leader(FTRL)

• Add additional smoothing regularizer $r(x) \ge 0$

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathcal{X}} f_{1:t}(x) + r(x)$$

Let $r_t(x) \ge 0 \quad \forall x \in \mathcal{X}$. Then we can consider the adaptive algorithm.

• Consider regularizer varies while round T increases.

$$x_1 = \operatorname*{argmin}_{x \in \mathcal{X}} r_0(x)$$

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathcal{X}} f_{1:t}(x) + r_{0:t}(x) \quad \text{for } t = 1, 2, \cdots$$

FTRL-Centered and FTRL-Proximal

- FTRL-Centered : Each r_t is minimized at a fixed point, $x_1 = \operatorname{argmin}_{x \in \mathcal{X}} r_0(x)$ $r_{0:t}$ is also minimized by x_1 . $r_{0:t}$ is called the *prox-function*.
- FTRL-Proximal: Each r_t is minimized by x_t.
 r_t is called incemental proximal regularizers.

Regret bound of FTRL

- Consider the linearized case. The followings are taken from H. B. McMahan, 2017.
- (Setting 1) $r_t \ge 0$, f_t, r_t : convex. $dom(r_{0:t} + f_{1:t}) \ne \emptyset$, $\partial f_t(x_t) \ne \emptyset$.
- (Thm 1 Thm 1 of McMahan, 2017) General FTRL Bound (Setting 1) + r_t are chosen s.t. $f_{1:t+1} + r_{0:t}$ is 1-strongly convex w.r.t. some norm $||\cdot||_{(t)}$. Then, for any $x^* \in \mathcal{X}$ and T > 0,

$$Regret_T(x^*) \le r_{0:T-1}(x^*) + \frac{1}{2} \sum_{t=1}^{T} ||g_t||_{(t-1),*}^2$$

where $g_t \in \partial f_t(x_t)$.

Regret bound of FTRL

• (Thm 2 - Thm 2 of McMahan, 2017) FTRL-Proximal Bound (Setting 1) + r_t are chosen s.t. $f_{1:t} + r_{0:t}$ is 1-strongly convex w.r.t. some norm $||\cdot||_{(t)}$ and r_t are proximal. Then, for any $x^* \in \mathcal{X}$ and T > 0,

$$Regret_T(x^*) \le r_{0:T-1}(x^*) + \frac{1}{2} \sum_{t=1}^{T} ||g_t||_{(t-1),*}^2$$

where $g_t \in \partial f_t(x_t)$.

• off-by-one difference In thm 1, r_t affect $||g_{t+1}||_*$, whereas r_t affect $||g_t||_*$ in thm 2. For this reason, FTRL-Proximal can choose r_t adaptive to g_t .

Regret bound of FTRL

- Compute regret bounds for some cases.
- Consider L2 regularizer for r.
- Show the importance of adaptivity.

Non-adaptive case

• $r_0(x)=\frac{1}{2\eta}||x||_2^2$ and $r_t(x)=0$ for $t\geq 1$. Then $x_1=\operatornamewithlimits{argmin}_{x\in\mathcal{X}}r_0(x)=0$ $x_{t+1}=\operatornamewithlimits{argmin}_{x\in\mathcal{X}}g_{1:t}\cdot x+\frac{1}{2\eta}||x||_2^2 \quad \text{for } t=1,2,\cdots$ $=x_t-\eta g_t$

It is a online grandient descent with constant learning rate.

• By Thm 1,

$$Regret_T(x^*) \leq \frac{1}{2\eta} ||x^*||_2^2 + \frac{1}{2} \sum_{t=1}^{I} \eta ||g_t||_2^2$$

• Suppose $||x^*||_2 \le R, ||g_t||_2 \le G$. If we want to minimize regret after exactly T' round, we need to choose $\eta = \frac{R}{G\sqrt{T'}}$ and we have

$$Regret_T(x^*) \leq RG\sqrt{T}$$

for T = T'. It does not work when $T \neq O(T')$.

Dual Averaging

• $r_t(x) = \frac{\sigma_t}{2} ||x||_2^2$ for $t \ge 0$. Let $\eta_t = 1/\sigma_{0:t}$. Then

$$egin{aligned} x_1 &= \operatorname*{argmin}_{x \in \mathcal{X}} r_0(x) = 0 \ x_{t+1} &= rac{\eta_t}{\eta_{t-1}} x_t - \eta_t g_t \quad ext{for } t = 1, 2, \cdots \end{aligned}$$

• By Thm 1,

$$Regret_{\mathcal{T}}(x^*) \leq \frac{1}{2\eta_{\mathcal{T}-1}} ||x^*||_2^2 + \frac{1}{2} \sum_{t=1}^{T} \eta_{t-1} ||g_t||_2^2$$

• Suppose $||x^*||_2 \le R, ||g_t||_2 \le G$. If we choose $\eta_t = \frac{\bar{R}}{\sqrt{2}G\sqrt{t+1}}$, then we have

$$Regret_T(x^*) \leq \sqrt{2}RG\sqrt{T}$$

• $r_0(x) = I_{\mathcal{X}}(x), r_t(x) = \frac{\sigma_t}{2} ||x||_2^2$ for $t \ge 1$. Let $\eta_t = 1/\sigma_{0:t}$. Then $x_1 = \text{anv } \bar{x} \in \mathcal{X}$ $x_{t+1} = x_t - \eta_t g_t$ for $t = 1, 2, \cdots$

• By Thm 1,

$$Regret_{\mathcal{T}}(x^*) \leq \frac{1}{2\eta_{\mathcal{T}-1}} ||x^*||_2^2 + \frac{1}{2} \sum_{t=1}^{I} \eta_{t-1} ||g_t||_2^2$$

• Suppose $\forall x \in \mathcal{X}, ||x||_2 < R, ||g_t||_2 < G$. If we choose $\eta_t = \frac{\sqrt{2R}}{G_0/t}$, then we have

$$Regret_T(x^*) \leq 2\sqrt{2}RG\sqrt{T}$$

: twice bigger than Dual averaging. Reason: $||r_t||_2 \le 2R$ in FTRL-Proximal, whereas $||r_t||_2 \le R$ in Dual Averaging.

AdaGrad style update

• In previous FTRL-Proximal setting, if we choose

Follow-the-Regularized-Leader(FTRL)

$$\eta_t = \frac{\sqrt{2}R}{\sqrt{\sum_{s=1}^t g_s^2}}$$

then we have

$$Regret_T(x^*) \leq 2\sqrt{2}R\sqrt{\sum_{t=1}^T g_t^2}$$

It would give better bound than previous results.

AdaGrad Dual Averaging

• In Dual Averaging setting, it is necessary to choose η_t as

$$\eta_t \simeq rac{R}{G^2 + \sqrt{\sum_{s=1}^t g_s^2}}$$

where $|g_t| \geq G$.

• Additional G^2 is due to the "off-by-one" difference.

Additional regularization

- Consider additional regularization term $\alpha_t \Psi(x)$ on each round t where $\Psi \geq 0$ is convex and $\alpha_t \geq 0$ for $t \geq 1$ are non-increasing in t. Further, assume $x_1 = \operatorname{argmin}_{x \in \mathcal{X}} \Psi(x)$ and w.l.o.g. $\Psi(x_1) = 0$.
- (Composite Objective FTRL)

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathcal{X}} g_{1:t} \cdot x + \alpha_{1:t} \Psi(x) + r_{0:t}(x).$$

• Ψ can be not strongly convex, unlike r.

Composite Objectives

Regret bound of FTRL for Composite Objectives

Follow-the-Regularized-Leader(FTRL)

 Thm 3 (Thm 10 of McMahan, 2017) (Setting 1) + r_t are chosen s.t. $f_{1:t} + \alpha_{1:t} \Psi + r_{0:t}$ is 1-strongly convex w.r.t. some norm $||\cdot||_{(t)}$ and r_t are proximal. Then, for any $x^* \in \mathcal{X}$ and T > 0,

$$Regret_{T}(x^{*}) \leq r_{0:T}(x^{*}) + \alpha_{1:T}\Psi(x^{*}) + \frac{1}{2}\sum_{t=1}^{T}||g_{t}||_{(t),*}^{2}$$

Bregman divergence

• For convex differentiable function ϕ , the Bregman divergence \mathcal{B}_{ϕ} is defined as:

$$\mathcal{B}_{\phi}(u,v) = \phi(u) - (\phi(v) + \nabla \phi(v) \cdot (u-v))$$

• If we take
$$\phi(u) = ||u||^2$$
, then $\mathcal{B}_{\phi}(u, v) = (u - v)^2$.

Follow-the-Regularized-Leader(FTRL)

Mirror Descent

• Composite-Objective Mirror Descent

$$\hat{x}_1 = \operatorname*{argmin}_{x} r(x)$$

$$\hat{x}_{t+1} = \operatorname*{argmin}_{x} g_t \cdot x + \alpha \Psi(x) + \mathcal{B}_r(x, \hat{x}_t) \quad \text{for } t = 1, 2, \cdots$$

Adaptive Composite-Objective Mirror Descent

$$\hat{x}_1 = \operatorname*{argmin}_{x} r_0(x)$$

$$\hat{x}_{t+1} = \operatorname*{argmin}_{x} g_t \cdot x + \alpha_t \Psi(x) + \mathcal{B}_{r_{o:t}}(x, \hat{x}_t) \quad \text{for } t = 1, 2, \cdots$$

Mirror Descent is an FTRL-Proximal Algorithm

• Define $r_t^{\mathcal{B}}$ as

$$r_0^{\mathcal{B}}(x) \equiv r_0(x)$$

 $r_t^{\mathcal{B}}(x) \equiv \mathcal{B}_{r_t}(x, x_t) \quad \text{for } t = 1, 2, \cdots$

with this regularizer $r_t^{\mathcal{B}}$, define the FTRL-Proximal algorithm

$$\begin{aligned} x_1 &= \operatorname*{argmin}_{x} r_0^{\mathcal{B}}(x) \\ x_{t+1} &= \operatorname*{argmin}_{x} g_{1:t} \cdot x + g_{1:t-1}^{(\Psi)} \cdot x + \alpha_t \Psi(x) + r_{o:t}^{\mathcal{B}}(x) \quad \text{for } t = 1, 2, \cdots \end{aligned}$$

where $g_t^{(\Psi)} \in \partial(\alpha_t \Psi)(x_{t+1})$ satisfies

$$g_{1:t} + g_{1:t}^{(\Psi)} + \nabla r_{0:t}^{\mathcal{B}}(x_{t+1}) = 0$$

Then this FTRL-Proximal update is equal to the Adaptive Composite-Objective Mirror Descent update.

Native FTRL

- Mirror descent linearizes the past $\alpha_s \Psi(x)$ terms for s < t.
- Consider the non-linearized version, Native FTRL algorithm

$$x_{1} = \underset{x}{\operatorname{argmin}} r_{0}^{\mathcal{B}}(x)$$

$$x_{t+1} = \underset{x}{\operatorname{argmin}} g_{1:t} \cdot x + \alpha_{1:t} \Psi(x) + r_{o:t}^{\mathcal{B}}(x) \quad \text{for } t = 1, 2, \cdots$$

- FTRL-Proximal and Mirror descent has same regret upper bound.
- There can be a substantial practical differences for some choices of Ψ .

$$\Psi(x) = ||x||_1$$

- FTRL Proximal give sparser solutions than Mirror descent
- Example) one dimension x. $r = ||\cdot||_2^2$, $\alpha_t = \lambda$ for all t.

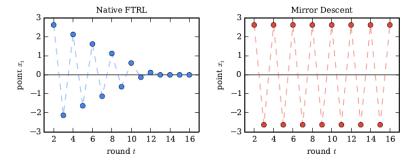


Figure: Fig 4 of H. B. McMahan, 2017

Lazy and Greedy projection

- FTRL-Proximal : Lazy-projection
- Mirror Descent : Greedy-projection

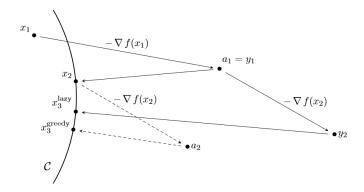


Figure: Fig 1 of J. Kwon & P. Mertikopoulos, 2014

References I

- McMahan, H. Brendan, and Matthew Streeter. "Adaptive bound optimization for online convex optimization." arXiv preprint arXiv:1002.4908 (2010).
- McMahan, H. Brendan. "Follow-the-regularized-leader and mirror descent: Equivalence theorems and I1 regularization." (2011).
- McMahan, H. Brendan, et al. "Ad click prediction: a view from the trenches." Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, (2013).
- Kwon, Joon, and Panayotis Mertikopoulos. "A continuous-time approach to online optimization." arXiv preprint arXiv:1401.6956 (2014).
- McMahan, H. Brendan. "A survey of algorithms and analysis for adaptive online learning." The Journal of Machine Learning Research 18.1 (2017): 3117-3166.