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Introduction

• Infant attempt combines neural networks to sentimental analysis

• Document level sentiment classification - rating 1-5 or 1-10

• bottom-up fashion algorithm
• Learns sentence representation w/ CNN or LSTM
• Sementics of sentences and their relatios are adaptively encoded with GRU

• Achieve state-of-the-arts results for IMDB and Yelp datasets.



Sentence Composition Document Composition

Overview

Figure: Fig. 1 of thesis
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Sentence Composition

• Sentence embedding from word embedding
• Word embedding: word2vec

• CNN and LSTM method
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CNN Sentence Composition

Figure: Fig. 2 of thesis. Filter: n-gram



Sentence Composition Document Composition

Document composition

• Simple averaging sentence vector fails to capture complex linguistic
relations(e.g. “cause” and “contrast”)

• Standard RNN suffers from gradient vanishing / exploding

• GatedRNN, Average, Bidirectional

Figure: Fig. 3 of thesis
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Datasets

Figure: Fig. 4 of thesis
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Comparison to Other Methods

Figure: Fig. 5 of thesis
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Model Analysis

Figure: Fig. 6 of thesis



Model Experiments

Attention-based LSTM for Aspect-level Sentiment Classification
Proceedings of the 2016 conference on empirical methods in natural

language processing

Yequan Wang, Minlie Huang, and Li Zhao* and Xiaoyan Zhu

State Key Laboratory on Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, China *Microsoft Research Asia

2016



Model Experiments

Introduction

• Aspect-level Sentimental classification:
One review has various (sometimes opposite) views for different aspects.

ex) “The appetizers are ok, but the service is slow”

Suggest aspect embedding vector for the first time

• Attention mechanism:
The model concentrate on different parts of a sentence when different
aspects are taken as input.

• LSTM-based sentence analysis

• Experiments
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LSTM

• N : length of sentence. hi ∈ Rd : hidden, w : word embedding.

Figure: Fig 1 of thesis
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Attension-based LSTM

• vai ∈ Rda : embedding of aspect i , da: dim. of aspect embedding.
A = (v ′a1

, · · · , v ′a|A|) ∈ Rda×|A| : matrix of all aspect embedding.

H ∈ Rd×N = [h′1, · · · , h′N ]
eN ∈ RN = (1, 1, · · · , 1)′

• Attension mechanism: from h1 to hN , where should we focus on? (α)

M = tanh(

[
WhH

Wvva ⊗ eN

]
)

α = softmax(w>M)

r = HαT

• Final sentence representation: linear combination of r and hN (not r only)

h∗ = tanh(Wpr + WxhN)

• output probability
y = softmax((Wsh ∗+bs)
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AT-LSTM

Figure: Fig 2 of thesis. How to achieve r in AT-LSTM alg.
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Attension-based LSTM with Aspect Embedding

• In AT-LSTM, va only is only used for computing attention weight α.

• By adding va as input of LSTM, h can have information of aspects.
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ATAE-LSTM

Figure: Fig 3 of thesis. How to achieve r in ATAE-LSTM alg.
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Dataset

• All aspects term is fixed

Figure: Table 1 of thesis
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Aspect-level classification

Figure: Table 2 of thesis
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Aspect-term-level classification

Figure: Table 3 of thesis. Aspect term polarity classification about restaurants.

Figure: Table 4 of thesis. Aspect term polarity classification about laptops.
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Qualitative analysis

• Visualize α

• Attend proper words for aspects

Figure: Fig 4 of thesis.
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Case Study

• Sentence with different aspects

• Keypoints are distributed and interpret the word ‘not’ correctly

• Long and complicated sentences

Figure: Fig 5 of thesis.


