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Introduction

Infant attempt combines neural networks to sentimental analysis

e Document level sentiment classification - rating 1-5 or 1-10

bottom-up fashion algorithm

o Learns sentence representation w/ CNN or LSTM
e Sementics of sentences and their relatios are adaptively encoded with GRU

o Achieve state-of-the-arts results for IMDB and Yelp datasets.
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Figure: Fig. 1 of thesis
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Sentence Composition

e Sentence embedding from word embedding
e Word embedding: word2vec

e CNN and LSTM method
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Document composition

e Simple averaging sentence vector fails to capture complex linguistic
relations(e.g. “cause” and “contrast”)

e Standard RNN suffers from gradient vanishing / exploding

o GatedRNN, Average, Bidirectional
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Figure: Fig. 3 of thesis
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Document Composition

Datasets
Corpus #docs #s/d | #w/d 4 #class Class Distribution
Yelp 2013 | 335,018 | 8.90 | 151.6 | 211,245 5 .09/.09/.14/.33/.36
Yelp 2014 | 1,125457 | 9.22 | 156.9 | 476,191 5 .10/.09/.15/.30/.36
Yelp 2015 | 1,569,264 | 8.97 | 151.9 | 612,636 5 .10/.09/.14/.30/.37
IMDB 348,415 | 14.02 | 325.6 | 115,831 10 .07/.04/.05/.05/.08/.11/.15/.17/.12/.18

Figure: Fig. 4 of thesis
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Comparison to Other Methods

Document Composition

Yelp 2013 Yelp 2014 Yelp 2015 IMDB

Accuracy MSE | Accuracy MSE | Accuracy MSE | Accuracy MSE
Majority 0.356 3.06 0.361 3.28 0.369 3.30 0.179 17.46
SVM + Unigrams 0.589 0.79 0.600 0.78 0.611 0.75 0.399 423
SVM + Bigrams 0.576 0.75 0.616 0.65 0.624 0.63 0.409 3.74
SVM + TextFeatures |  0.598 0.68 0.618 0.63 0.624 0.60 0.405 3.56
SVM + AverageSG 0.543 1.11 0.557 1.08 0.568 1.04 0.319 5.57
SVM + SSWE 0.535 1.12 0.543 1.13 0.554 1.11 0.262 9.16
JMARS N/A - N/A - N/A - N/A 4.97
Paragraph Vector 0.577 0.86 0.592 0.70 0.605 0.61 0.341 4.69
Convolutional NN 0.597 0.76 0.610 0.68 0.615 0.68 0.376 3.30
Conv-GRNN 0.637 0.56 0.655 0.51 0.660 0.50 0.425 2.71
LSTM-GRNN 0.651 0.50 0.671 0.48 0.676 0.49 0.453 3.00

Figure: Fig. 5 of thesis
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Model Analysis

Yelp 2013 Yelp 2014 Yelp 2015 IMDB

Accuracy MSE | Accuracy MSE | Accuracy MSE | Accuracy MSE
Average 0.598 0.65 0.605 0.75 0.614 0.67 0.366 3.91
Recurrent 0.377 1.37 0.306 1.75 0.383 1.67 0.176 12.29
Recurrent Avg 0.582 0.69 0.591 0.70 0.597 0.74 0.344 3.71
Bi Recurrent Avg | 0.587 0.73 0.597 0.73 0.577 0.82 0.372 3.32
GatedNN 0.636 0.58 0.656 0.52 0.651 0.51 0.430 2.95
GatedNN Avg 0.635 0.57 0.659 0.52 0.657 0.56 0.416 2.78
Bi GatedNN Avg 0.637 0.56 0.655 0.51 0.660 0.50 0.425 2.71

Figure: Fig. 6 of thesis
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Model Experiments

Introduction

o Aspect-level Sentimental classification:
One review has various (sometimes opposite) views for different aspects.

ex) "“The appetizers are ok, but the service is slow”

Suggest aspect embedding vector for the first time

e Attention mechanism:
The model concentrate on different parts of a sentence when different
aspects are taken as input.

e LSTM-based sentence analysis

e Experiments
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LSTM

e N : length of sentence. h; € RY: hidden, w: word embedding.
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Attension-based LSTM

o v, € R% : embedding of aspect i, da: dim. of aspect embedding.
A= (vj, ,véw) € R%*A1 . matrix of all aspect embedding.
HERdXN = [hilla 7h;\l]
ev €RY =(1,1,---,1)

o Attension mechanism: from h; to hy, where should we focus on? ()

M = tanh({ WhH })

Wv Va ® en
o = softmax(w " M)
r=Ha"
o Final sentence representation: linear combination of r and hy (not r only)

hx = tanh(W,r + Wihy)

e output probability
y = softmax((Wsh x +bs)
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AT-LSTM
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Model Experiments

Attension-based LSTM with Aspect Embedding

e In AT-LSTM, v, only is only used for computing attention weight «.

e By adding v, as input of LSTM, h can have information of aspects.



Experiments
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Model

Dataset

o All aspects term is fixed

Asp Positive Negative Neural
" | Train | Test | Train | Test | Train | Test

Fo. 867 | 302 | 209 | 69 90 31
Pr. 179 51 115 28 10 1
Se. 324 | 101 | 218 63 20 3
Am. | 263 76 98 21 23 8
An. 546 | 127 | 199 | 41 357 51
Total | 2179 | 657 | 839 | 222 | 500 | 94

Figure: Table 1 of thesis

Experiments
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Aspect-level classification

Models Three-way Pos./Neg.
LSTM 82.0 88.3
TD-LSTM 82.6 89.1
TC-LSTM 81.9 89.2
AE-LSTM 82.5 88.9
AT-LSTM 83.1 80.6
ATAE-LSTM 84.0 89.9

Figure: Table 2 of thesis
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Aspect-term-level classification

Models Three-way Pos./Neg.
LSTM 74.3 -
TD-LSTM 75.6 -
AE-LSTM 76.6 89.6
ATAE-LSTM 77.2 90.9

Figure: Table 3 of thesis. Aspect term polarity classification about restaurants.

Models Three-way Pos./Neg.
LSTM 66.5 -
TD-LSTM 68.1 -
AE-LSTM 68.9 87.4
ATAE-LSTM 68.7 87.6

Figure: Table 4 of thesis. Aspect term polarity classification about laptops.



Model Experiments

Qualitative analysis

e Visualize «

e Attend proper words for aspects
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Figure: Fig 4 of thesis.
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Case Study

e Sentence with different aspects
o Keypoints are distributed and interpret the word ‘not’ correctly

e Long and complicated sentences

The appetizers are ok, but the service is slow,

1 r
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