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I There is not a catchment model that will perform consitently over the
wide range of conditions that exist

– A modeller must choose the most appropriate model

(→ modeller’s preference, familiarity with particular models)

I Because of model uncertainty,

– Combine the results from several different hydrogical models.(like Bayesian

Model Averaging)

I Hierarchical Mixtures of Experts(HME) is a method of combining model

results which allows the individual model weights to be estimated

dynamically
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HME Framework

I HME models have probabilistic switch between model structure.

I This switch is dependent on the current hydrological ’state’ of the

catchment.(by user-defined predictor variables.)

I It consists of

– Expert Network(Component models)

– Gating Network(weights, ex: logisitic function)
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Two-level HME

Figure: Two-level HME

4/10



HME Framework

I User-defined predictor variables which contain conditions of the current

state of the catchment are used.

I Expert Network

– Data is divided probabilistically based on some exogenous factors.

– Models are fitted to the data that fall in each region.

I Gating Network.

– Mathmatical function that assigns a probability to each model based on the

predefined predictor.

– For two-component models, a simple choice for the gating function,

gt,1 =
eβYt

1+ eβYt

I Monte Carlo (MCMC) methods are used to estimate gating and individual

model parameters.
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Case study

I Modeling rainfall-runoff model.

I 10 Catchments are chosen to vary in terms of size, location, and yield in

Australia,

I One level, two component HME is applied with simplified Australian

Water Balance Model.

Figure: AWBM
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Case study

I AWBM parameters K, BFI and S

– Highly interdependent → adaptive Metropolis algorithm.

– However, the algorithm is applied when sampling all model parameters as a

whole and may not be suited to HME structure.

– Instead, pre-tuning runs were performed with the single AWBM using the

adaptive Metropolis alogorithm.

– 50,000 iterations for each catchments, and this yields an estimate of the

covariance of parameters’ posterior distributions.

– Then, Metropolis algorithm was used to sample the AWBM parameters.

– Multivariate normal proposal distribution with mean at the current value

and fixed covariance based on the pre-tuning run of the Metropolis

algorithm
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Case study

I Gating network parameters β

– Linear logistic function.

– Metropolis algorithm.

– Multivariate normal proposal distribution with mean at the current value

and fixed covariance

I Variance σ2

– Proposal distribution

σ2
′
∼ χ−2{ν = 4+ 2(σ2)2/σ2

θ , λ = 2σ2[1+ (σ2)2]

– σ2
′
is the proposed value, σ2 is the current value, σ2

θ is proposeal variance

that is tuned to get proper acceptance rate
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Case study

I Prior densities.

– Diffuse or vague priors are used.

– For gating function coefficients, prior are normal with mean zero and large

variances.

I Likelihood function

– Applying a Box-Cox transformation, → Uncorrelated error term.

p(Q|θ) = (2πσ2)−n/2 ×
∏

exp(−{log[(Qt + λ2)/f (xt ; θ) + λ2)]}2t /2σ2)

× (Qt + λ2)
−1

– p(Q|θ) is the likelihood, Qt is the observed streamflow at time step t,

f (xt ; θ) is the calculated flow at time step t, n is the length of the data, xt

is the set of inputs at time t, θ is the set of model parameters, andλ is set

at 0.5

9/10



Case study
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