Towards dynamic catchment modelling: a Bayesian Hierarchical mixtures of experts framework Marshall et al.(2007)

이종진

Seoul National University

ga0408@snu.ac.kr

July 06, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1/10

- There is not a catchment model that will perform consitently over the wide range of conditions that exist
 - A modeller must choose the most appropriate model
 - $(\rightarrow$ modeller's preference, familiarity with particular models)
- Because of model uncertainty,
 - Combine the results from several different hydrogical models.(like Bayesian Model Averaging)

イロト (雪) (ヨ) (ヨ) (ヨ) ()

Hierarchical Mixtures of Experts(HME) is a method of combining model results which allows the individual model weights to be estimated dynamically

- HME models have probabilistic switch between model structure.
- This switch is dependent on the current hydrological 'state' of the catchment.(by user-defined predictor variables.)
- It consists of
 - Expert Network(Component models)
 - Gating Network(weights, ex: logisitic function)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Two-level HME

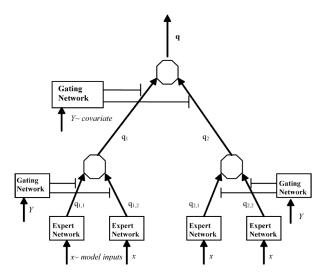


Figure: Two-level HME

HME Framework

- User-defined predictor variables which contain conditions of the current state of the catchment are used.
- Expert Network
 - Data is divided probabilistically based on some exogenous factors.
 - Models are fitted to the data that fall in each region.
- Gating Network.
 - Mathmatical function that assigns a probability to each model based on the predefined predictor.
 - For two-component models, a simple choice for the gating function,

$$g_{t,1} = \frac{e^{\beta Y_t}}{1 + e^{\beta Y_t}}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Monte Carlo (MCMC) methods are used to estimate gating and individual model parameters.

- Modeling rainfall-runoff model.
- 10 Catchments are chosen to vary in terms of size, location, and yield in Australia,
- One level, two component HME is applied with simplified Australian Water Balance Model.

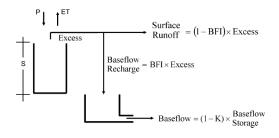


Figure: AWBM

・ロト ・ 一下・ ・ 日 ・ ・ ー

= nac

AWBM parameters K, BFI and S

- Highly interdependent \rightarrow adaptive Metropolis algorithm.
- However, the algorithm is applied when sampling all model parameters as a whole and may not be suited to HME structure.
- Instead, pre-tuning runs were performed with the single AWBM using the adaptive Metropolis alogorithm.
- 50,000 iterations for each catchments, and this yields an estimate of the covariance of parameters' posterior distributions.
- Then, Metropolis algorithm was used to sample the AWBM parameters.
- Multivariate normal proposal distribution with mean at the current value and fixed covariance based on the pre-tuning run of the Metropolis algorithm

• Gating network parameters β

- Linear logistic function.
- Metropolis algorithm.
- Multivariate normal proposal distribution with mean at the current value and fixed covariance

▶ Variance σ^2

- Proposal distribution

$$\sigma^{2'} \sim \chi^{-2} \{ \nu = 4 + 2(\sigma^2)^2 / \sigma_{\theta}^2, \lambda = 2\sigma^2 [1 + (\sigma^2)^2] \}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

 $-\sigma^{2'}$ is the proposed value, σ^2 is the current value, σ^2_{θ} is proposeal variance that is tuned to get proper acceptance rate

- Prior densities.
 - Diffuse or vague priors are used.
 - For gating function coefficients, prior are normal with mean zero and large variances.
- Likelihood function
 - Applying a Box-Cox transformation, \rightarrow Uncorrelated error term.

$$p(Q|\theta) = (2\pi\sigma^2)^{-n/2} \times \prod \exp(-\{\log[(Q_t + \lambda_2)/f(x_t;\theta) + \lambda_2)]\}_t^2/2\sigma^2)$$
$$\times (Q_t + \lambda_2)^{-1}$$

- $p(Q|\theta)$ is the likelihood, Q_t is the observed streamflow at time step t, $f(x_t; \theta)$ is the calculated flow at time step t, n is the length of the data, x_t is the set of inputs at time t, θ is the set of model parameters, and λ is set at 0.5

Catchment	AWBM		Two-component HME Nash-Sutcliffe	HME maximum log-likelihood
	Nash-Sutcliffe Coefficient	Maximum log-likelihood	coefficient	log intelliood
A	0.74	-495	0.88	4183
В	0.58	1345	0.80	22 086
С	0.81	-2273	0.92	-725
D	0.41	-4677	0.75	6266
E	0.51	9278	0.87	15432
F	0.66	-5264	0.86	81
G	0.52	19942	0.58	22134
Н	0.76	-3033	0.91	-183
I	0.81	-14882	0.92	-9527
J	0.79	-3752	0.91	-2259

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - 釣�?