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Introduction: Factor models

The conventional factor model assumes that an observed variable y ≡ (y1, . . . , yp) is
generated as

y|z ∼ Np(Bz, φI), z ∼ NK (0, I).

In the high dimensional setup, usually B is assumed to be sparse.
But if p � en, the sparse factor model assumes that most of the variables are just
noise.



Sparse variable clustering models

Sparse variable clustering (SVC) model assumes that an observed variable
y ≡ (y1, . . . , yp) is generated as

y|x ∼ Np(Ax, φI), x ∼ NK (0,Σx),

where x ≡ (x1, . . . , xK ) is an unobserved latent variable and A is a binary valued
matrix such that

A ∈ Ap,K :=
{
A ∈ {0, 1}p×K :

∥∥A[j,:]

∥∥
0

= 1
}
.

and Σx is a sparse covariance matrix.

Notation For a p1 × p2 matrix A we let A[i,j] denote the (i, j)th entry of A. For two index sets

I ⊂ [p1] and J ⊂ [p2], let A[I,J] denote the submatrix (A[i,j])i∈I,j∈J . For notational

convenience, we write A[i,J] := A[{i},J], A[−i,J] := A[[p1]\{i},J] and A[:,J] := A[[p1],J], and the

similar notations are used for the column index.



Sparse variable clustering models

The sparse variable clustering model is equivalently written as

yj = xk(j) + εj

where εj
iid∼ N(0, φ), and k(j) denotes the index of 1 of the vector aj .



Sparse variable clustering models

We impose sparsity on the covariance matrix Σx by assuming that Σx can be
decomposed as

Σx = ΓΓ> + Ψ

where Γ is a K × L sparse matrix and Ψ is a diagonal matrix with diagonal entries
ψ1, . . . , ψK .

This is equivalent to say that the latent variable x is generated as

x|z ∼ NK (Γz,Ψ), z ∼ NL(0, I).



Covariance matrix under the sparse variable clustering models

The covariance matrix Σ of y is given by

Σ = A(ΓΓ> + Ψ)A> + φI

where (j , j ′)th entry is given by

Cov(yj , yj′ ) = γ>
k(j)γk(j′) + ψk(j)1{k(j)=k(j′)} + φ1{j=j′}.



Prior

• Data: y(1), . . . , y(n), which are assumed to be independently generated as

y(i)|x(i) ∼ Np(Ax(i), φI), x(i)|z(i) ∼ NK (Γz(i),Ψ), z(i) ∼ NL(0, I).

• Prior
π(A) = CRP(A;α)

K = ncol(A)

π (U|K) = IBPK(U;κ)

π (Γ|U) =
K∏

k=1

∞∏
l=1

{
(1− uk,l )δ0(γk,l ) + uk,lLap(γk,l ; 1)

}
π(Ψ|K) =

K∏
k=1

IG(ψk ; aψ , bψ)

π(φ) = IG(φ; aφ, bφ)



MCMC sampler

For the sampling of A from the posterior distribution, we use the approximated
distribution of the CRP by truncating the number of the “breaks” of the stick
breaking representation of CRP. Recall that the stick breaking representation of the
CRP is given by

π
(
(k(j))j∈[p]|(vh)h∈N

)
=

p∏
j=1

Mult

k(j); 1,

(
vk

k−1∏
h=1

(1− vh)

)
k∈N


π ((vh)h∈N) =

∞∏
h=1

Beta(vh; 1, α).

where Mult(·; n, p) denotes the multinomal distribution with a number of trials n and
event probabilities p ≡ (pk )k∈N with

∑∞
k=1 pk = 1.

For the sampling from the posterior distribution under the Laplace distribution prior,
we use the fact that γ ∼ Lap(1) if and only if γ|τ ∼ N(0, τ), τ ∼ Exp(1/2).



MCMC sampler

• Sampling aj for j ∈ [p].
Let K∗ be the specified upper bound of the number of clusters. That is, we set
vK∗ = 1 so that the prior probability that the each variable belongs to the
K∗,K∗ + 1, . . . ,-th clusters.
We sample k(j) ∈ {1, . . . ,K∗} and let aj = (1{k(j)=1}, . . . ,1{k(j)=K∗}). We
update k(j) by multinomial sampling with

π(k(j) = k|−) ∝ π(k(j) = k) exp

{
−(2φ)−1

n∑
i=1

(
y

(i)
j − x

(i)
k

)2
}

where π(k(j) = k) = vk
∏

h<k (1− vh).

• Sampling vk for k ∈ [K∗].
We update the stick-breaking weight vk for k ∈ [K∗ − 1] by the sampling

vk |− ∼ Beta

1 + npk , α+ n
K∗∑

h=k+1

ph


where pk := |{j ∈ [p] : k(j) = k}|.



MCMC sampler

• Sampling uk,l for k ∈ [K ] and l ∈ N
Let L∗ be the number of columns of Γ. Let K−k,l =

∑
k′ 6=k uk′,l . We first

update uk,l for k ∈ [K ] and l ∈ [L∗] by binary sampling with probability

Π(uk,l = 1|−)

Π(uk,l = 0|−)
=

K−k,l

K∗ − K−k,l

√
τ̂k,l

τk,l
exp

(
1

2τ̂k,l
γ̂2
k,l

)
where

τ̂k,l :=

(
ψ−1
k

n∑
i=1

(
z

(i)
k

)2
+ τ−1

k,l

)−1

γ̂k,l := τ̂k,l

ψ−1
k

n∑
i=1

z
(i)
l

x
(i)
k −

∑
l′ 6=l

γk,l′z
(i)
l′

 .



MCMC sampler

• Sampling uk,l for k ∈ [K ] and l ∈ N (cont’d)

For sampling new columns, we propose L̃k ∈ N0 and γ̃k ∈ RL̃k from the prior
distribution as

(L̃k ,Mk ) ∼ Pois(κ/(K∗ − 1)) {Lap(1)}L̃k

and accept the proposal with probability

max

{
1, |2πMk |−

K∗
2 exp

((
1

2
e2
k,l

)
γ̃>k M−1

k γ̃k

)}
where Mk = ψ−1

k γ̃k γ̃
>
k + I and ek,l = ψ−1

k

∑n
i=1

(
x

(i)
k − Γ>

[k,:]
z(i)
)

. If the

proposal is accepted, update the current Γ by setting Γ[k,[L∗+L̃k ]\[L∗]] = γ̃k and

L∗ by L∗ + L̃k .



MCMC sampler

• Sampling γk,l for for k ∈ [K ] and l ∈ [L∗]
If uk,l = 1, update γk,l by sampling

γk,l |− ∼ N
(
γ̂k,l , τ̂k,l

)
and sampling γk,l |− ∼ N(0, τk,l ) otherwise

• Sampling τk,l for for k ∈ [K ] and l ∈ [L∗]
If uk,l = 1, update τk,l by sampling from the following distribution

π(τk,l |−) ∝ τ−1/2
k,l exp

(
−

1

2

(
τk,l +

γ2
k,l

τk,l

))

which is equivalent to sampling from the generalized inverse Gaussian distribution
and sampling τk,l ∼ Exp(1/2) otherwise.



MCMC sampler

• Sampling x(i) for i ∈ [n]

x(i)|− ∼ N

((
φ−1A>A + Ψ−1

)−1 (
Ψ−1Γz(i) + φ−1A>y(i)

)
,
(
φ−1A>A + Ψ−1

)−1
)

• Sampling z(i) for i ∈ [n]

z(i)|− ∼ N
(
Ψ−1

(
ΓΨ−1Γ + I

)−1
Γ>x(i),

(
ΓΨ−1Γ + I

)−1
)
.

• Sampling ψk for k ∈ [K∗]

ψk |− ∼ IG

(
aψ +

n

2
, bψ +

1

2

n∑
i=1

(
x

(i)
k − Γ>[k,:]z

(i)
)2
)
.

• Sampling φ

φ|− ∼ IG

aφ +
np

2
, bφ +

1

2

n∑
i=1

p∑
j=1

(
y

(i)
j − a>j x(i)

)2




