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Introduction

» Techiques for interpreting and understanding what the model has learned have

therefore become a key ingredient of a robust validation procedure

» This paper gives an overview of techniques for interpreting complex machine
learning models, with a focus on deep neural networks.
> First, it can be usefule to clarify the meaning we associate to definitions in this

paper.



Introduction

> Definition 1. Interpretation is the mapping of an abstract concept (e.g. a
predicted class) into a domain that the human can make sense of.

About estimated model f

> Definition 2. Explanation is the collection of features of the interpretable
domain, that have contributed for a given example to produce a decision (e.g.
classification or regression)

About givan a input x and estimated model f

» Example of explanation is a heatmap highlighting which pixels of the input image

most strongly support the classification decision.



Explaining DNN Decision

> We ask for a given data point x and pre-trained deep neural network f

» A common approach is to view the data point x as a collection of features (x,-);’:1
and to assign to each of these, a score R; determining how relevant the feature x;

is for explaining f(x)
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Figure 3: Explanation of the DNN prediction “boat” for an image 2
given as input.



Sensitivity Analysis

> It is based on the models locally evaluated gradient or some other local measure

of variation.
of
> R = ()2
3x,-
» The most relevant input features are those to which the output is most sensitive.

> The technique is easy to implement for a deep neural network, since the gradient

can be computed using backpropagation.



Sensitivity Analysis

> It is important to note that sensitivity analysis does not produce an explanation

of the function value f(x) itself, but rather a variation of it.

» YL Ri(x) = VA0



Simple Taylor Decomposition

» The Taylor decomposition is a method that explains the model’s decision by

decomposing the function value f(x) as a sum of relevance scores.
» Consider some root point X for which f(x) =0

> This expansion lets us rewrite the function as:

d



Simple Taylor Decomposition

» Consider a special class of functions :

piecewise linear, f(tx) = tf(x) for t > 0 (deep ReLU networks)

> Let fbe a functio satisfying above condition, then root point X = lim¢_0 ex and

higher-order terms are zero

: of
> fix) = Z Ri(x) where Ri(x) = p ol
i=1 Xj



LRP(Layerwise Relevance Propagation)

> Decomposong the prediction of a DNN is to make explicit use of its feed-forward

graph structure.
> (/) be the weight from j-the node in I-th layer to k-th node in [41-th layer.

> x}l) be the activated value of j-th node in I-th layer.

D (D
> (I) => WR(H—U is the score of j-the node in I-th layer where € > 0

is a stabllzatlon term

\4

R(AHD) = f(x) where L is the number of hidden layer.



LRP(Layerwise Relevance Propagation)

> af-rule
XjW

RO _ Z( RA/TRYTEY
! ijwjk 22X

where ()Tand ()~ denote the positive and negitive parts respectively, and where

the parameter aand are chosen subject to the constraints « — f=1and 8 >0



LRP and Deep Taylor Decomposition

> LRP-a; 80 and Deep Taylor decomposition are same in some sense.
> Consier deep ReLU networks

> a;, = max(0, ZJ- ajwjk + by) with b, <0

» Then, we can rewrite Ry = aici

> Ri=max(0, Y ajw,, + by)

> Using Taylor expansion, we can get a first-order them:

ORy ~
Ry = Z 52, 1@, (@ = &)

Oa
; j



Handling Special Layers

> Ip-pooling layers(including sum pooling and max-pooling)
> LRP authors use a winner-take-all redistrubition policy for max pooling layer.

> Montavon et al. recommend to apply for /,-pooling layers the following

propagation rule:
x;
RJ(-I)= G Rl((/Jrl)
Z,-Xj



Explanation Continuity

» Explanation continuity can be quantified by looking for the strongest variation of

the explanation R(x) in the input domain

mae — 1RCY = RO
= kA

> When f(x) is a deep ReLU network, both sensitivity and Taylor decomposition
have sharp discontinuity.
> On the other hand, deep Taylor LRP produces continuous explanations.

simple Taylor  relevance propugation

itivity analysi
SORSIVIY SREYSE decomposition  (deep Taylor LRP)
\

1

Figure 6: Explaining max(z1,3). Function values are represented
as a contour plot, with dark regions corresponding to high values.
Relevance scores are represented as a vector field, where horizontal
and vertical components are the relevance of respective input vari-
ables.
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CAM (Class Activation Mapping)

> The authors suggest a Class Activation Mapping which is a explanation method.

> Use a network architecture similar to GoolLeNet.

> Before the final output layer, the author perform global average pooling on the

convolutional feature map.



CAM (Class Activation Mapping)

> Let fk(x, y) represent the activation of unit k in the last convolutional layer at
spatial location (x,y).

> For unit k, the result of performing global average pooling FK = 2oy k(6 y)

> So, for a given class c, the input to the softmax, Sc =", wi Fi

Se=D WD filxy) =D Y wifilxy) =) Me(xy)
k K

Xy Xy k

where Mc(x,y) = >, wifi(x,y)



CAM (Class Activation Mapping)
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CAM (Class Activation Mapping)

dome

Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g.. dome activates the upper round part while
palace activates the lower flat part of the compound.
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Introduction

v

It is difficult to intuitively and quantitatively understand the result of DNN

inference.

Note that this aspect differs from feature selection, where the question is:

which features are on average salient for the ensemble of training data.
It is difficult to quantitatively evaluate the quality of a heatmap.

An automated objective and quantitative measure for assessing heatmap quanlity

becomes necessary.



Heatmap

> A heatmap h = {hp} assigns each pixel p a value hp, = H(x, f, p)
where f: R? — Rt the scoring function.

> Since h the same dimensionality as x, it can be visualized as an image.

Random Segmentation Relevance



Evaluating Heatmaps

> Heatmap quality does not only depend on the algorithms used to compute a

heatmap, but also on the performance of the classifier.

> If the training data does not contain images of the defits '3’, then the classifier

can not know that the absence of strokes in the above figure.

> Note that there is no guarantee that human and classifier explanations match.



Experimental Result

> Use 3 benchmark datasets (SUN397, ILSVRC2012, MIT Places)

Image Sensitivity Deconv. LRP

SUN397




Experimental Result

ILSVRC20M2




Experimental Result

MIT Places




Experimental Result

MIT Places




Pertubation measure

> Define a heatmap as an ordered set of locations in the image, where these

locations might lie on a predefined grid.

O =(r,r,...,rq)

where each rp, (p=1,...,d) is for example a two-dimensional vector encoding
the horizontal and vertical position on a grid of pixels. (can be a singple pixel or a

local neighborhood)

> A heatmap function h, = H(x, f, rp) indicates how important the given location rp

of the image is for representing the image class.



MoRF and AOPC

> Region perturbation process that follows the ordered sequence of locations.

XS\%RF = X &)
XS\;();RF = g(XS\/II(cTRlF)7 V1< k<d. )

> The process of removing information in order of importance

» The quantity of interest in this case is the area over the MoRF perturbation

curve(AOPC)

L

_1 (x(0) 0)
AOPC(L) = + Z Xiore) — TXMorE) >p(x)
k=1

~

where <. >, denotes the average over all images in the dataset.



Experimental Result

Sum3ar ILSVRC2012 MIT Places
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Fig. 4 Comparison of the three heatmapping methods elative to the random baseline. The LRP algorithms have largest AOPC values, ie., best explain the
classifier's decision, for all three data sets.
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Multiplicative Interactions

> Let z; be an upper layer neuron, whose value in the forward pass is computed as

the multiplication of the two lower layer neuron values zg and z; (i.e. zj = zgzs)

> In LSTMs GRUs, there is always one of two lower-layer neurons that constitutes a

h,T

@@ni>
o () 0r = (W, + [Re_y, x¢] + bg)
hy = o; + tanh(C;)
(o] he

gate.

hea

A

> In LSTM, zs = o, zg = tanh(Cy)




Multiplicative Interactions

» Weset Rg=0and Rs = R;

» That is( i think), for input x, the relevance score R; ~ ﬁ
t t

> The intuition behind this reallocation rule is that the gate neuron decides already
in the forward pass how much of the information contained in the source neuron

should be retained to make the overall classification decision.



Experimental Result

» 2210 tokenized sentences of the Stanford Sentiment Treebank
> five-class (Very negative, negative, neutral, positive, very positive)

> The trained model achives 46.3% accuracy and for binary classification, 82.9%



Multiplicative Interactions

true [predicted| N |Wotation: -- very negative, - negative, 6 neutral, + positive, ++ very positive
1. |do N ESES your NN
2. | funny nor suspenseful mor particularly well-drawn .
3.|i€ 's [l horrible , just horribly NN -
4. | NN OO S¥oW , DM bORENG , and occasionally NN -
5.|it 's EEEENER as romantic fior as [EENMENN =s it should be .
. 6. |the MMM of disaster - it 's a piece of Hreck HHSHUNSEH as comedy .
7. | B . so TMISCONCEived , so badly drawn , it created whole new LEVENS of BN -
8. |a film so _ that it is impessible to EMEE whether that BOASE is true or not
o. | editing and [E68 mnyr scenes il what could have been an NGEERNE
documentary about stand-up
- 10.|this §UEE has 1ost its originality ... and neither star appears very excited at
rehashing what was basically a JESEEENE pictur
++ | 21. ecks this one [l your WSESSEs NESE .
- 12. |this is [l a ' friday '' WOWEW waiting for
- 13. [there is [l an BUAGE of honesty in the SAEEFE production .
- 14. |do 't expect any SUFPriSes in this checklist of [NNNNGNN EENNEN ...
- 15. | he has i Yearnt that SESENESNNNN is what the movies are about .
- 16. [but here 's the [N MM : ic is W funny , either .
+ 17. |these are names to remember , in order to Ml them in the future .
- 18. | the cartoon that is i really good enough to be on afternoon tv is now a movie that
is n't really good enough to be in theaters
" 19. |a worthy entry into a very [N genre .
- 20.|it 's a GO0 film -- [l @ classic , but odd , entertaining and authentic .
21. |1t never failS to [N Us -
Figure I: SA h of y test s, using as target class the frue sentence class. All

relevances are positive and mapped to red, the color intensity is normalized to the maximum relevance

per sentence. The true sentence class, and the ifier’s predicted class, are i

d on the left.




Multiplicative Interactions

true | predicted| * |Motation: -- very negative, - negative, 6 neutral, + pasitive, ++ very positive
1.[do n't EEEEN your money -
2. | [ N oY ISPSRSSEN BN pocticularly well-drawn .
3. )it s not NN - ust NN EEEEEE -
a. too slow , too bOFENg , and occasionally NN -
5. |it 's NS s rowantic Wl as ERFEMIERG as it should be .
.. 6. | the fSteR of EENNENEN - it 's o piece of WEEEN disguised as
7.|so gkupid , so Ellsconceived , so badly drawn , it created whole new levels of N -
8. |a film so [N that it is ENPOSSEENE to care whether that boast is [l or not .
9. | EH@PPY editing and £60 many [EEEENNENN scenes SPOEN what could have been an ENPORESNE
documentary about stand-up comedy .
- 10. | this i@ has EOSE its qm o [ star appears very gXeited at
rehashing what was basically a jlh vlctur; i
- 11. |ecks this one off your [NEEETT NEEE .
- 12, |this is [l @~ friday '' [EE] WaEtang for .
- 13, |there is fiBH an BifiGE of QIR in the entire production .
- 14. |do %€ expect any ENBNNEEN in this checklist of teamwork NN ...
- 15. |he has [l learnt that SEGFYE€ILLING is what the OVAES are about .
- 16. |but here 's the real damn : it is [ funny , either .
+ 17. |Ehese are names to [QENSNEEN , in order to @W@E them in the [WEMRS -
. 18. | the cartoon that is [ilij really 8B enough to be on afternoon & is now a movie that
is [l really Q@08 enough to be in theaters .
19. |a WM entry into a very genre .
- " | 20.|it 's a go68 film -- G a classic , but odd , ENSSESSNNNN and EESNSN
- 21, |it never [EENE to SOENE Us .

Figure 2:

LRP h

of y test s s, using as target class the rrue sentence cla:

luve rel:\/dnce is mapped to red, negative to blue, and the color intensity is normalized to the maximum

on the left.

per The true class, and the




Multiplicative Interactions

SA
most relevant | least relevant
broken-down | into
wall what
execution that
lackadaisical | a
milestone do
unreality of
soldier all
mournfully ca
insight in
disorienting ‘s

LRP
most relevant | least relevant
funnier wrong
charm n't
polished forgettable
ZOrgeous shame
excellent lintle
screen predictable
honest overblown
wall rying
confidence lacking
perfectly nonsense

Table 1: Ten most resp. least relevant words iden-
tified by SA and LRP over all 2210 test sentences,
using as relevance target class the class “very pos-

itive”.
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