The Solution Of Generalized Lasso For Non Full Rank Case

Presented by Jaesung Hwang

Seoul National University postechiminuru@gmail.com

February 18, 2019

Outline

(1) Introduction
(2) Proposed method
(3) The Characterization of Solutions Set

4 Future Work

Outline

(1) Introduction

(2) Proposed method

(3) The Characterization of Solutions Set

4) Future Work

Introduction

Let $\mathbf{y} \in \mathbb{R}^{n}$ be a response vector and $\mathbf{X} \in \mathbb{R}^{n \times p}$ be a matrix of predictors.

- Generalized Lasso Problem(Tibshirani et al., 2011): Generalized Lasso problem is written as:

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}^{p}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda\|D \boldsymbol{\beta}\|_{1}
$$

where $D \in \mathbb{R}^{m \times p}$ is a specified penalty matrix.

Introduction

- The conventional solution path algorithm $(\operatorname{rank}(X)<p)$
- By adding a little ϵ ridge penalty, the algorithm for full rank X matrix can be applied.
- For a fixed $\epsilon>0$, consider

$$
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|D \beta\|_{1}+\epsilon\|\beta\|_{2}^{2}
$$

which is the same as

$$
\begin{array}{r}
\qquad \min _{\beta} \frac{1}{2}\left\|y^{*}-\left(X^{*}\right) \beta\right\|_{2}^{2}+\lambda\|D \beta\|_{1} \\
\text { where } y^{*}=\left(y^{T}, 0\right)^{T} \text { and } X^{*}=\left[\begin{array}{c}
X \\
\epsilon \cdot I
\end{array}\right]
\end{array}
$$

- We propose an exact solution path of the Generalized Lasso problem.
- When the solution is nonuniqueness, we characterize all solution sets and find various kinds of solutions.

Outline

(1) Introduction

(2) Proposed method

(3) The Characterization of Solutions Set

4) Future Work

Dual problem

- Divide the β as follows:

$$
\beta=V \eta+W \tau
$$

where V is the matrix that is orthogonal basis elements for the row space of X in its columns and W is the matrix that is orthogonal basis elements for the null space of X in its columns i.e. $X W=0$.

- Primal problem

$$
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|D \beta\|_{1}
$$

Since $\beta=V \eta+W \tau$,

$$
\min _{\eta, \tau} \frac{1}{2}\|y-X V \eta\|_{2}^{2}+\lambda\|D V \eta+D W \tau\|_{1}
$$

Using the auxiliary variable z, we rewrite this problem as:

$$
\min _{\eta, z, \tau} \frac{1}{2}\|y-X V \eta\|_{2}^{2}+\lambda\|z\|_{1} \quad \text { subject to } D V \eta+D W \tau=z
$$

Dual problem

- Lagrangian function

$$
\mathcal{L}(\eta, z, \tau, u)=\frac{1}{2}\|y-X V \eta\|_{2}^{2}+\lambda\|z\|_{1}+u^{T}(D V \eta+D W \tau-z)
$$

- Dual function

$$
\mathcal{D}(u)=\min _{\eta, z, \tau} \mathcal{L}(\eta, z, \tau, u)
$$

Since η, z and τ are decoupled in the Lagrangian function, we can minimize the Lagrangian function with repect to η, z and τ separately.

- Dual problem

$$
\max _{u \in \mathbb{R}^{m}} \mathcal{D}(u)
$$

Dual problem

- We rewrite the dual problem:

$$
\begin{equation*}
\min _{u \in \mathbb{R}^{m}} \frac{1}{2}\left\|\tilde{y}-\tilde{D}^{T} u\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

subject to $\|u\|_{\infty} \leq \lambda,(D W)^{T} u=0$, where $\tilde{y}=X X^{+} y, \tilde{D}=D X^{+}$and $X^{+}=\left(X^{\top} X\right)^{+} X^{T}$.

- A necessary and sufficient condition for u to be a solution of the dual problem is that u satisfy KKT conditions, since the dual problem is a convex problem.
- In order to find a solution path of the dual problem as λ moves from ∞ to 0 , the dual variable u satisfying KKT conditions will be obtained.
We define a boundary set \mathcal{B}_{λ}.

$$
\mathcal{B}_{\lambda}=\left\{i:\left|u_{i}\right|=\lambda\right\}
$$

KKT condition

- For our problem (1), the KKT conditions are

$$
\begin{equation*}
\left(\tilde{D} \tilde{D}^{T} u\right)_{i}-(\tilde{D} \tilde{y})_{i}+\alpha \gamma_{i}+(D W \delta)_{i}=0 \quad \text { for } i=1, \cdots, m \tag{2}
\end{equation*}
$$

where $u, \alpha, \gamma, \delta$ are subject to the constraints

$$
\begin{gather*}
\|u\|_{\infty} \leq \lambda \tag{3}\\
\alpha \geq 0 \tag{4}\\
\alpha\left(\|u\|_{\infty}-\lambda\right)=0 \tag{5}\\
\|\gamma\|_{1} \leq 1 \tag{6}\\
\gamma^{T} u=\|u\|_{\infty} \tag{7}\\
(D W)^{T} u=0 \tag{8}
\end{gather*}
$$

Constraints (6) and (7) say that γ must be a subgradient of $\|u\|_{\infty}$ with respect to u.

Algorithm Overview

- When $\lambda=\infty$, find a dual variable and lagrangian multipliers of the dual variable satisfying the KKT conditions.
- When $\lambda<\infty$, find a dual variable and lagrangian multipliers of the dual variable satisfying the KKT conditions.
- When $\lambda \leq \lambda_{k}$, find a dual variable and lagrangian multipliers of the dual variable satisfying the KKT conditions.
- Calculate event time $\left(\lambda_{k+1}\right)$.

How to find a dual variable and lagrangian multipliers $(\lambda=\infty)$
$\lambda=\lambda_{0}=\infty$

- We can ignore the inequality constraint $\|u\|_{\infty} \leq \lambda$.
- The KKT conditions can be reduced to the following linear system.

$$
\left[\begin{array}{cc}
\tilde{D} \tilde{D}^{T} & D W \tag{9}\\
(D W)^{T} & 0
\end{array}\right]\left[\begin{array}{l}
u\left(\lambda_{0}\right) \\
\delta\left(\lambda_{0}\right)
\end{array}\right]=\left[\begin{array}{c}
\tilde{D} \tilde{y} \\
0
\end{array}\right]
$$

- We solve the above linear system to obtain the dual variable $u\left(\lambda_{0}\right)$ and the lagrangian multiplier $\delta\left(\lambda_{0}\right)$ satisfying the KKT conditions.

How to find a dual variable and lagrangian multipliers $(\lambda<\infty)$
$\lambda<\lambda_{0}=\infty$

- $u(\lambda), \delta(\lambda), \alpha(\lambda)$ and $\gamma(\lambda)$ for satisfying KKT conditions are as follows:

$$
\begin{gathered}
u(\lambda)=\hat{u}\left(\lambda_{0}\right), \delta(\lambda)=\hat{\delta}\left(\lambda_{0}\right), \alpha(\lambda)=0, \\
\gamma_{i}(\lambda)= \begin{cases}1 \times \operatorname{sign}\left(\hat{u}_{i}(\lambda)\right) & \text { If } i=\operatorname{argmax}_{j}\left|\hat{u}_{j}(\lambda)\right| \\
0 & \text { Otherwise }\end{cases}
\end{gathered}
$$

- As the λ decreases, the KKT condition $\|u(\lambda)\|_{\infty} \leq \lambda$ can be violated.
- Therefore, the λ, at which KKT condition is violated, is the maximum value of the absolute value of the dual variable $\hat{u}(\lambda)$. And insert the corresponding coordinate into boundary set \mathcal{B}.

$$
\begin{gathered}
\lambda_{1}=\max _{i}\left(\left|\hat{u}_{i}(\lambda)\right|\right) \\
\mathcal{B}_{\lambda_{1}}=\mathcal{B}_{\lambda_{0}} \cup\left\{i|\underset{i}{\operatorname{argmax}}| \hat{u}_{i}(\lambda) \mid\right\}
\end{gathered}
$$

where $\mathcal{B}_{\lambda_{0}}=\emptyset$.

How to find a dual variable and lagrangian multipliers

 $\left(\lambda \leq \lambda_{k}\right)$$$
\lambda \leq \lambda_{k}
$$

- The solution is given by $\hat{u}_{\mathcal{B}_{\lambda_{k}}}(\lambda)=\lambda s$ for the boundary coordinates where s is a sign vector.
- To satisfy KKT conditions, $u_{-\mathcal{B}_{\lambda_{k}}}(\lambda)$ and $\delta(\lambda)$ satisfy the following linear system with the inequality constraint i.e.

$$
\begin{align*}
& {\left[\begin{array}{ll}
\tilde{D}_{-\mathcal{B}_{\lambda_{k}}} \tilde{D}_{-\mathcal{B}_{\lambda_{k}}}^{T} & (D W)_{-\mathcal{B}_{\lambda_{k}}}
\end{array}\right]\left[\begin{array}{l}
u_{-\mathcal{B}_{\lambda_{k}}}(\lambda) \\
(D(\lambda))_{-\mathcal{B}_{\lambda_{k}}}^{T}
\end{array}\right]=\left[\begin{array}{l}
\tilde{D}_{-\mathcal{B}_{\lambda_{k}}}\left(\tilde{y}-\lambda \tilde{D}_{\mathcal{B}_{\lambda_{k}}}^{T} s\right) \\
-\lambda(D)_{\mathcal{B}_{\lambda_{k}}} s
\end{array}\right]} \\
& \left(\tilde { D } _ { i } \left(\tilde{y}-\lambda \tilde{D}_{\mathcal{B}_{\lambda_{k}}}^{T} s-\tilde{D}_{-\mathcal{B}_{\lambda_{k}}}^{T} u_{\left.\left.-\mathcal{B}_{\lambda_{k}}(\lambda)\right)-D_{i} W \delta(\lambda)\right) \times s_{i} \geq 0, \quad i \in \mathcal{B}_{\lambda_{k}}} .\right.\right. \tag{10}
\end{align*}
$$

How to find a dual variable and lagrangian multipliers

 $\left(\lambda \leq \lambda_{k}\right)$- The solution $u_{-\mathcal{B}_{\lambda_{k}}}(\lambda)$ and $\delta(\lambda)$ of the linear system (10) have the following form:

$$
\left[\begin{array}{l}
\hat{u}_{-\mathcal{B}_{\lambda_{k}}}(\lambda) \tag{11}\\
\hat{\delta}(\lambda)
\end{array}\right]=\left[\begin{array}{l}
\hat{u}_{-\mathcal{B}_{\lambda_{k}}}^{-}\left(\lambda_{k}\right) \\
\hat{\delta}^{-}\left(\lambda_{k}\right)
\end{array}\right]+\left(\lambda_{k}-\lambda\right) H^{\dagger}\left[\begin{array}{l}
\tilde{D}_{-\mathcal{B}_{\lambda_{k}}} \tilde{D}_{\mathcal{B}_{\mathcal{A}_{k}}}^{T} s \\
(D W)_{\mathcal{B}_{\lambda_{k}}} s
\end{array}\right]
$$

where $\hat{u}_{-\mathcal{B}_{\lambda_{k}}}^{-}\left(\lambda_{k}\right)$ and $\hat{\delta}^{-}\left(\lambda_{k}\right)$ are the dual variable and the lagrangian multiplier before updating at λ_{k} and $H=\left[\begin{array}{ll}\tilde{D}_{-\mathcal{B}_{\lambda_{k}}} \tilde{D}_{-\mathcal{B}_{\lambda_{k}}}^{T} & (D W)_{-\mathcal{B}_{\lambda_{k}}} \\ (D W)_{-\mathcal{B}_{\lambda_{k}}}^{T} & 0\end{array}\right]$.

- To satisfy the KKT conditions, $\alpha(\lambda)$ and $\gamma(\lambda)$ are as followings:

$$
\begin{gathered}
\alpha(\lambda)=\left\|\tilde{D}_{\mathcal{B}_{\lambda_{k}}}\left(\tilde{y}-\tilde{D}^{T} \hat{u}(\lambda)\right)-D_{\mathcal{B}_{\lambda_{k}}} W \hat{\delta}(\lambda)\right\|_{1} \\
\gamma_{-\mathcal{B}_{\lambda_{k}}}(\lambda)=0 \text { and } \gamma_{\mathcal{B}_{\lambda_{k}}}(\lambda)=\frac{1}{\alpha}\left(\tilde{D}_{\mathcal{B}_{\lambda_{k}}}\left(\tilde{y}-\tilde{D}^{T} \hat{u}(\lambda)\right)-D_{\mathcal{B}_{\lambda_{k}}} W \hat{\delta}(\lambda)\right)
\end{gathered}
$$

Event time $\left(\lambda \leq \lambda_{k}\right)$

Check the KKT conditions.

- As we decrease λ, only two of the KKT conditions can be also violated:
- The first is $\left\|u_{-\mathcal{B}_{\lambda_{k}}}(\lambda)\right\|_{\infty} \leq \lambda$
- Insert the corresponding interior coordinates into the boundary set $\mathcal{B}_{\lambda_{k}}$.
- The second is $\gamma^{T} u=\|u\|_{\infty}=\lambda$ Since $\gamma^{T} u=\gamma_{\mathcal{B}_{\lambda_{k}}}^{T} u_{\mathcal{B}_{\lambda_{k}}}$ and $\|\gamma\|_{1}=1$, the second condition is $\operatorname{sign}\left(\gamma_{\mathcal{B}_{\lambda_{k}}}(\lambda)\right)=\operatorname{sign}\left(u_{\mathcal{B}_{\lambda_{k}}}(\lambda)\right)$.
There are two possibilities because $\gamma(\lambda)$ is related to $u(\lambda)$ and $\delta(\lambda)$.
- $\delta(\lambda)$ changes.
- One of the boundary set, which violate the condition, left out the boundary set $\mathcal{B}_{\lambda_{k}}$.

Event time $\left(\lambda \leq \lambda_{k}\right)$

- $\left\|u_{-\mathcal{B}_{\lambda_{k}}}(\lambda)\right\|_{\infty} \leq \lambda$

$$
\begin{equation*}
h_{k+1}=\max _{i \in-\mathcal{B}_{\lambda_{k}}} \frac{u_{i}\left(\lambda_{k}\right)-\lambda_{k} \times l_{i}}{-l_{i} \pm 1} \tag{12}
\end{equation*}
$$

- $\operatorname{sign}\left(\gamma_{\mathcal{B}_{\lambda_{k}}}(\lambda)\right)=\operatorname{sign}\left(u_{\mathcal{B}_{\lambda_{k}}}(\lambda)\right)$

$$
\begin{equation*}
l v_{k+1}=\max _{i \in \mathcal{B}_{\lambda_{k}}} t_{i}^{(\text {leave })} \tag{13}
\end{equation*}
$$

where $t_{i}^{(\text {leave })}=\left\{\begin{array}{ll}\frac{\xi_{i} s_{i}}{\eta_{i} s_{i}} & \text { if } \xi_{i} s_{i}<0 \text { and } \eta_{i} s_{i}<0 \\ 0 & \text { otherwise. }\end{array}\right.$ and $\alpha \gamma_{\mathcal{B}_{\lambda_{k}}}=\boldsymbol{\xi}-\lambda \boldsymbol{\eta}$

- Thus we can know the next event time λ_{k+1} that the KKT is violated by calculating a next hit time and a next leave time.

$$
\lambda_{k+1}=\max \left\{h_{k+1}, / v_{k+1}\right\}
$$

- Update the boundary set or update the δ according to whether next event time is a hit time or a leave time, and then calculate variables to satisfy the KKT.

At leave time, when does the $\delta(\lambda)$ change? $\left(\lambda \leq \lambda_{k}\right)$

- At leave time, there are two possibilities.
- $\delta\left(\lambda_{k+1}\right)$ changes.
- One of the boundary set left out the boundary set $\mathcal{B}_{\lambda_{k}}$.
- The coordinate i, which is violated, is left out the boundary set $\mathcal{B}_{\lambda_{k}}$ temporarily.
- Let l_{i} be the slope of u_{i} and s_{i} be the sign of u_{i}. So if $l_{i} \times s_{i}>1$, then leave the coordinate i out of the boundary set $\mathcal{B}_{\lambda_{k}}$, otherwise, $\delta(\lambda)$ changes.
- If $\delta\left(\lambda_{k+1}\right)$ changes, then boudary set $\left(\mathcal{B}_{\lambda_{k+1}}\right)$ is the same as $\mathcal{B}_{\lambda_{k}}$, so the slopes of \hat{u} and δ does not change.
To find $\delta\left(\lambda_{k+1}\right)$, we solve the following linear system:

$$
\begin{gather*}
(D W)_{-\mathcal{B}_{\lambda_{k+1}}} \delta\left(\lambda_{k+1}\right)=\tilde{D}_{-\mathcal{B}_{\lambda_{k+1}}}\left(\tilde{y}-\tilde{D}^{T} \hat{u}\left(\lambda_{s}\right)\right)-\left(\lambda_{s}-\lambda_{k}\right)(D W)_{-\mathcal{B}_{\lambda_{k+1}}} \delta_{l} \\
-D_{i} W \delta\left(\lambda_{k+1}\right) \times s_{i} \geq \tilde{D}_{i}\left(\tilde{D}^{T} \hat{u}\left(\lambda_{s}\right)-\tilde{y}\right) \times s_{i}+\left(\lambda_{s}-\lambda_{k}\right) D_{i} W \delta_{l} \times s_{i} \\
\text { for } i \in \mathcal{B}_{\lambda_{k+1}} \tag{14}
\end{gather*}
$$

where $\lambda_{s}=\lambda_{k+1}-\epsilon$

Exact Dual Solution Path Algorithm

- Start with $k=0, \lambda_{0}=\infty, \mathcal{B}_{0}=\emptyset$, and $s=\emptyset$.
- Solve the linear block system (9) and $\lambda_{1}=\max _{i}\left|\hat{u}_{i}\right|$, the corresponding coordinate is put in \mathcal{B}_{0}, and and the sign of the corresponding value is put in \boldsymbol{s}.
- While $\lambda_{k}>0$:

1. If the prior event is a hit event, calculate (11) to obtain the slope of $\hat{u}_{-\mathcal{B}_{\lambda_{k}}}$ and $\hat{\delta}, I$ and δ_{l}.
2. Compute the next hit time h_{k+1} using (12).
3. Compute the next leave time $/ v_{k+1}$ using (13).
4. $\lambda_{k+1}=\max \left(h_{k+1}, l v_{k+1}\right)$
5. If $h_{k+1}>/ v_{k+1}$, then add the hitting coordinate and sign to $\mathcal{B}_{\lambda_{k}}$ and \mathbf{s} and move to next iteration.
Otherwise, move to next step.
6. The coordinate i, which is violated, is left out the boundary set $\mathcal{B}_{\lambda_{k}}$ temporarily $\left(\tilde{\mathcal{B}}_{\lambda_{k}}\right)$.
7. Calculate (11) to obtain the slope of $\hat{u}_{-\tilde{\mathcal{B}}_{\lambda_{k}}}$ and $\hat{\delta}, \tilde{l}$ and $\tilde{\delta}_{l}$.
8. If $\tilde{l}_{i} \times s_{i}>\underset{\tilde{I}}{1}$, then leave the coordinate i out of the boundary set $\mathcal{B}_{\lambda_{k}}$ and assign $\tilde{I}, \tilde{\delta}_{l}$ to I, δ_{l}, otherwise, $\delta(\lambda)$ changes by solving (14).

Recover a primal solution path from the dual solution path

- A primal solution path can be recovered from the dual solution path through the primal - dual relationships.
- The relationship between η and u is:

$$
V \eta=\left(X^{\top} X\right)^{+}\left(X^{\top} y-D^{T} u\right)
$$

This relationship can be obtained by setting the gradient of the $\mathcal{L}(\eta, z, \tau, u)$ with respect to η equal to zero.

- The relationship between τ and u is:

$$
\begin{aligned}
D_{-\mathcal{B}} W \tau & =\tilde{D}_{-\mathcal{B}}\left(\tilde{D}^{T} u-\tilde{y}\right) \\
D_{\mathcal{B}} W \tau \times \operatorname{sign}\left(u_{\mathcal{B}}\right) & \geq \tilde{D}_{\mathcal{B}}\left(\tilde{D}^{T} u-\tilde{y}\right) \times \operatorname{sign}\left(u_{\mathcal{B}}\right)
\end{aligned}
$$

This relationship can be obtained by setting the gradient of the $\mathcal{L}(\eta, z, \tau, u)$ with respect to z equal to zero.

- $\beta=V \eta+W \tau$

Recover primal solution

Theorem

Primal variable $\tau(\lambda)$ is same as $-\delta(\lambda)$ which is a lagrange multiplier of dual variable $u(\lambda)$.

- Through this algorithm, the primal solution, β, has the following relation with u and δ.

$$
\beta=V \eta(\lambda)+W \tau(\lambda)=\left(X^{\top} X\right)^{+}\left(X^{\top} y-D^{T} u(\lambda)\right)-W \delta(\lambda)
$$

Outline

(1) Introduction

(2) Proposed method

(3) The Characterization of Solutions Set

4 Future Work

Non-uniqueness of the solution

- When the solution of the generalized Lasso problem is given $\hat{\beta}_{\lambda}$, is it a unique solution?
- Clearly, if $\operatorname{null}(X) \cap \operatorname{null}(D) \neq\{0\}$, then the solution of the generalized Lasso problem is not unique for any $\lambda>0$.
- But, if $\operatorname{null}(X) \cap \operatorname{null}(D)=\{0\}$, the uniqueness of the solutions depends on λ.
- For given $\hat{\beta}_{\lambda}$, we characterize the solutions set.

Non-uniqueness of the solution

Lemma

If $\hat{\beta}_{1}, \hat{\beta}_{2}$ are the solutions of the generalized Lasso problem at λ, then

$$
\frac{1}{2}\left\|y-X \hat{\beta}_{1}\right\|_{2}^{2}=\frac{1}{2}\left\|y-X \hat{\beta}_{2}\right\|_{2}^{2}
$$

- This means that $\hat{\beta}_{2}=\hat{\beta}_{1}+\gamma$ where $\gamma \in \operatorname{null}(X)$.

Non-uniqueness of the solution

- Let $\hat{\beta}_{\lambda}$ be the solution of Generalized Lasso problem at λ.
- We can also define an active set : $\mathcal{A}_{\lambda}=\left\{i: d_{i}^{\top} \hat{\beta}_{\lambda} \neq 0\right\}$.

Theorem (Sufficient and necessary condition for non-uniqueness)

$\exists \gamma \in \operatorname{null}(X)$ such that

$$
\begin{equation*}
\sum_{k \in \mathcal{A}_{\lambda}} \operatorname{sign}\left(d_{k}^{T} \hat{\beta}_{\lambda}\right) d_{k}^{T} \gamma+\sum_{k \in-\mathcal{A}_{\lambda}}\left|d_{k}^{T} \gamma\right|=0 \tag{15}
\end{equation*}
$$

,if and only if the solution of Generalized Lasso problem is not unique at λ.

The Characterization of Solutions Set

Theorem

Suppose $\hat{\beta}_{\lambda}$ is the solution of Generalized Lasso problem at λ. At λ, all of the solutions ($\tilde{\beta}_{\lambda}$) follow the formula:

$$
\tilde{\beta}_{\lambda}=\hat{\beta}_{\lambda}+\gamma, \quad \gamma \in \Gamma
$$

where $\Gamma=\left\{\gamma \in \operatorname{null}(X): \sum_{k \in \mathcal{A}_{\lambda}} \operatorname{sign}\left(d_{k}^{T} \hat{\beta}_{\lambda}\right) d_{k}^{T} \gamma+\sum_{k \in-\mathcal{A}_{\lambda}}\left|d_{k}^{T} \gamma\right|=\right.$ $0, \operatorname{sign}\left(d_{k}^{T}\left(\hat{\beta}_{\lambda}+\gamma\right)\right)=\operatorname{sign}\left(d_{k}^{T} \hat{\beta}_{\lambda}\right)$ for $\left.k \in \mathcal{A}_{\lambda}\right\}$.

- For given λ, the signs of $d_{k}^{T} \beta$ in the active set of all solutions are unchanged.
- We just characterize the set Γ to find all solutions of Generalized Lasso problem for a given $\hat{\beta}_{\lambda}$.

The Characterization of Solutions Set

- We can characterize the solutions set as follows:

$$
\left\{\hat{\beta}_{\lambda}+\gamma: \gamma \in \bigcup_{s \in \mathcal{S}} \Gamma_{s}\right\}
$$

where $\Gamma_{s}=\left\{W H_{s} \psi: F_{s} H_{s} \psi \geq 0, M H_{s} \psi \geq N\right\}$ and
\mathcal{S} is a set of all combinations of sign vectors $\in(-1,1)^{\left|-\mathcal{A}_{\lambda}\right|}$.
$F_{s}=s \times\left[d_{k}^{\top} W\right]_{k \in-\mathcal{A}_{\lambda}}$ where s is a sign vector
H_{s} is the basis of the null space of $\mathbf{1}^{T}\left[\operatorname{sign}\left(d_{k}^{T} \hat{\beta}\right) d_{k}^{T} W\right]_{k \in \mathcal{A}_{\lambda}}+\mathbf{1}^{T} F_{s}$
$M=\operatorname{sign}\left(\left[d_{k}^{T}\right]_{k \in \mathcal{A}_{\lambda}} \hat{\beta}_{\lambda}\right) \times\left(\left[d_{k}^{T} W\right]_{k \in \mathcal{A}_{\lambda}}\right)$
$N=-\operatorname{sign}\left(\left[d_{k}^{T}\right]_{k \in \mathcal{A}_{\lambda}} \hat{\beta}_{\lambda}\right) \times\left(\left[d_{k}^{T}\right]_{k \in \mathcal{A}_{\lambda}} \hat{\beta}_{\lambda}\right)$.

The Characterization of Solutions Set

- $A l l \Gamma_{s}$ have three cases:
- All Γ_{s} are zero vector set.
- The given solution is unique solution.
- All Γ_{s} are the same set, not zero vector set.
- The given solution is the solution with the largest active set.
- Some Γ_{s} are the same set which is not a zero vector set, and all other Γ_{s} are zero vector sets.
- The given solution is not the solution with the largest active set.
- The signs of the coordinates contained in the largest active set are fixed. (by Theorem)
- Therefore Γ is same as Γ_{s} for a specific s.

Types of the solutions

- We can express other solutions as follows:

$$
\tilde{\beta}_{\lambda}=\hat{\beta}_{\lambda}+C \psi \quad \text { subject to } A \psi \geq B
$$

where $A=\left[\begin{array}{c}F_{s} H_{s} \\ M H_{s}\end{array}\right], B=\left[\begin{array}{l}0 \\ N\end{array}\right]$ and $C=\left[W H_{s}\right]$.

- We can find the various kinds of solutions
- The largest active set solution
- The smallest active set solution
- I_{2} minimal solution
- I_{∞} maximal solution

How to find the sign vector

- In order to find Γ_{s} which is not a zero vector set, we have to know the signs of the coordinates ($D_{i} \tilde{\beta}$ where $\tilde{\beta}$ has the solution with the largest active set) contained in the largest active set.
- Recall the derivation of the dual function. Since η, z and τ are decoupled in the Lagrangian function, we can minimize the Lagrangian function with repect to η, z and τ separately.

How to find the sign vector

- The minimization over z for given u is as follows:

$$
\min _{z} \lambda\|z\|_{1}-u^{T} z
$$

Since the problem is convex problem, the minimizer \hat{z} satisfy the KKT condition:

$$
\lambda \gamma-u=0
$$

where γ is a subgradient of $\|\cdot\|_{1}$ at \hat{z} i.e.

$$
\gamma_{i}=\left\{\begin{array}{cc}
\operatorname{sign}\left(\hat{z}_{i}\right) & \text { if } \hat{z}_{i}\left(=D_{i} \hat{\beta}\right) \neq 0 \\
{[-1,1]} & \text { if } \hat{z}_{i}\left(=D_{i} \hat{\beta}\right)=0
\end{array}\right.
$$

which is equivalent to

$$
u_{i}= \begin{cases}\lambda \operatorname{sign}\left(\hat{z}_{i}\right) & \text { if } \hat{z}_{i}\left(=D_{i} \hat{\beta}\right) \neq 0 \\ {[-\lambda, \lambda]} & \text { if } \hat{z}_{i}\left(=D_{i} \hat{\beta}\right)=0\end{cases}
$$

- This means that the boundary set \mathcal{B}_{λ} contains the active set \mathcal{A}_{λ}.

I_{2} minimal solution

- We can find the I_{2} minimal solution by solving the problem:

$$
\min _{\psi}\left\|\hat{\beta}_{\lambda}+C \psi\right\|_{2}^{2} \quad \text { subject to } A \psi \geq B
$$

- Since this problem is quadratic program and $C=W H_{s}$ is full column rank, if $\psi=-\left(C^{T} C\right)^{-1} C^{T} \hat{\beta}_{\lambda}$ does not satisfy the inequality constraint, then the solution of the problem is on the boundary of the feasible set.
- By using the Binding-Direction Primal Active-set algorithm, we find the solution of the problem.

I_{∞} maximal solution

- We can find the I_{∞} maximal solution by solving the problem:

$$
\max _{\psi}\left\|\hat{\beta}_{\lambda}+C \psi\right\|_{\infty} \quad \text { subject to } A \psi \geq B
$$

- Since $\|\cdot\|_{\infty}$ is the convex function, the maximizer is on the boundary of the feasible set.

Simple Example

- We characterize other solutions for a given $\hat{\beta}_{\lambda}$ of the following two simple examples.
- The two examples have the same y and X, but different penalty matrix D.

$$
\begin{aligned}
& \text { } y=[1000], \quad X=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \\
& \text { 1. } D=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0.1 & 0 & 0 \\
0 & 0.1 & 0
\end{array}\right] \\
& \text { 2. } D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

- The basis matrix W of the null space of X is as following:

$$
W=\left[\begin{array}{cc}
0 & -\frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} \\
1 & 0
\end{array}\right]
$$

Simple Example

When λ is 2000 for the first example and $\hat{\beta}_{\lambda}$ we found is [$\left.\begin{array}{lll}400 & 400 & 400\end{array}\right]^{\top}$. An active set \mathcal{A} is $\{3,4\}$. And a sign set \mathcal{S} is $\left\{[1,1]^{T},[-1,1]^{T},[1,-1]^{T},[-1,-1]^{T}\right\}$.

- $s=[1,1]^{T}$

$$
\Gamma_{s}=\left\{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{T}\right\}
$$

- $s=[-1,1]^{T}$

$$
\Gamma_{s}=\left\{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{T}\right\}
$$

- $s=[1,-1]^{T}$

$$
\Gamma_{s}=\left\{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{T}\right\}
$$

- $s=[-1,-1]^{T}$
$\Gamma_{s}=\left\{\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{T}\right\}$
Therefore, in this example, $\hat{\beta}_{\lambda}=\left[\begin{array}{lll}400 & 400 & 400\end{array}\right]^{T}$ is a unique solution for a given $\lambda=2000$.

Simple Example

We characterize the other solutions when λ is 700 for the second example and $\hat{\beta}_{\lambda}$ we found is $\left[\begin{array}{lll}200 & 100 & 100\end{array}\right]^{\top}$.
An active set \mathcal{A} is $\{1,2\}$. And a sign set \mathcal{S} is $\{[1],[-1]\}$.

- $s=[1]$

$$
\Gamma_{s}=\left\{\left[\begin{array}{lll}
-\psi & \psi & \psi
\end{array}\right]^{T}:-100 \leq \psi \leq 200\right\}
$$

- $s=[-1]$

$$
\left.\Gamma_{s}=\left\{\begin{array}{lll}
-\psi & \psi & \psi
\end{array}\right]^{\top}:-100 \leq \psi \leq 200\right\}
$$

Therefore, in this example, for a given $\lambda=700$, we can characterize other solutions as follows:

$$
\tilde{\beta}_{\lambda}=\left[\begin{array}{c}
200-\psi \\
100+\psi \\
100+\psi
\end{array}\right] \quad,-100 \leq \psi \leq 200
$$

Outline

(1) Introduction

(2) Proposed method

(3) The Characterization of Solutions Set

4) Future Work

Future work

- Real data analysis for nonuniqueness solution

The End

