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Introduction

Let y ∈ Rn be a response vector and X ∈ Rn×p be a matrix of predictors.

Generalized Lasso Problem(Tibshirani et al., 2011):
Generalized Lasso problem is written as:

min
β∈Rp

1

2
||y − Xβ||22 + λ‖Dβ‖1

where D ∈ Rm×p is a specified penalty matrix.
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Introduction

The conventional solution path algorithm (rank(X ) < p)

By adding a little ε ridge penalty, the algorithm for full rank X matrix
can be applied.
For a fixed ε > 0, consider

min
β∈Rp

1

2
‖y − Xβ‖22 + λ‖Dβ‖1 + ε‖β‖22

which is the same as

min
β

1

2
‖y∗ − (X ∗)β‖22 + λ‖Dβ‖1

where y∗ = (yT , 0)T and X ∗ =

[
X
ε · I

]
We propose an exact solution path of the Generalized Lasso problem.

When the solution is nonuniqueness, we characterize all solution sets
and find various kinds of solutions.
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Dual problem

Divide the β as follows:

β = V η + W τ

where V is the matrix that is orthogonal basis elements for the row
space of X in its columns and W is the matrix that is orthogonal
basis elements for the null space of X in its columns i.e. XW = 0.

Primal problem

min
β∈Rp

1

2
‖y − Xβ‖22 + λ‖Dβ‖1

Since β = V η + W τ ,

min
η,τ

1

2
‖y − XV η‖22 + λ‖DV η + DW τ‖1

Using the auxiliary variable z , we rewrite this problem as:

min
η,z,τ

1

2
‖y − XV η‖22 + λ‖z‖1 subject toDV η + DW τ = z
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Dual problem

Lagrangian function

L(η, z , τ, u) =
1

2
‖y − XV η‖22 + λ‖z‖1 + uT (DV η + DW τ − z)

Dual function
D(u) = min

η,z,τ
L(η, z , τ, u)

Since η, z and τ are decoupled in the Lagrangian function, we can
minimize the Lagrangian function with repect to η, z and τ separately.

Dual problem
max
u∈Rm

D(u)

Presented by Jaesung Hwang (SNU) Doctorial dissertation February 18, 2019 8 / 39



Dual problem

We rewrite the dual problem:

min
u∈Rm

1

2
‖ỹ − D̃Tu‖22 (1)

subject to ‖u‖∞ ≤ λ, (DW )Tu = 0,
where ỹ = XX+y , D̃ = DX+ and X+ = (XTX )+XT .

A necessary and sufficient condition for u to be a solution of the dual
problem is that u satisfy KKT conditions, since the dual problem is a
convex problem.

In order to find a solution path of the dual problem as λ moves from
∞ to 0, the dual variable u satisfying KKT conditions will be
obtained.
We define a boundary set Bλ.

Bλ = {i : |ui | = λ}
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KKT condition

For our problem (1), the KKT conditions are

(D̃D̃Tu)i − (D̃ỹ)i + αγi + (DW δ)i = 0 for i = 1, · · · ,m (2)

where u, α, γ, δ are subject to the constraints

‖u‖∞ ≤ λ (3)

α ≥ 0 (4)

α(‖u‖∞ − λ) = 0 (5)

‖γ‖1 ≤ 1 (6)

γTu = ‖u‖∞ (7)

(DW )Tu = 0 (8)

Constraints (6) and (7) say that γ must be a subgradient of ‖u‖∞
with respect to u.
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Algorithm Overview

When λ =∞, find a dual variable and lagrangian multipliers of the
dual variable satisfying the KKT conditions.

When λ <∞, find a dual variable and lagrangian multipliers of the
dual variable satisfying the KKT conditions.

When λ ≤ λk , find a dual variable and lagrangian multipliers of the
dual variable satisfying the KKT conditions.

Calculate event time (λk+1).
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How to find a dual variable and lagrangian multipliers
(λ =∞)

λ = λ0 =∞

We can ignore the inequality constraint ‖u‖∞ ≤ λ.

The KKT conditions can be reduced to the following linear system.[
D̃D̃T DW

(DW )T 0

] [
u(λ0)
δ(λ0)

]
=

[
D̃ỹ
0

]
(9)

We solve the above linear system to obtain the dual variable u(λ0) and the
lagrangian multiplier δ(λ0) satisfying the KKT conditions.
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How to find a dual variable and lagrangian multipliers
(λ <∞)

λ < λ0 =∞
u(λ), δ(λ), α(λ) and γ(λ) for satisfying KKT conditions are as follows:

u(λ) = û(λ0), δ(λ) = δ̂(λ0), α(λ) = 0,

γi (λ) =
{ 1× sign(ûi (λ)) If i = argmaxj |ûj(λ)|

0 Otherwise

As the λ decreases, the KKT condition ‖u(λ)‖∞ ≤ λ can be violated.

Therefore, the λ, at which KKT condition is violated, is the maximum value
of the absolute value of the dual variable û(λ). And insert the corresponding
coordinate into boundary set B.

λ1 = max
i

(|ûi (λ)|)

Bλ1 = Bλ0 ∪ {i | argmax
i
|ûi (λ)|}

where Bλ0 = ∅.
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How to find a dual variable and lagrangian multipliers
(λ ≤ λk)

λ ≤ λk
The solution is given by ûBλk

(λ) = λs for the boundary coordinates where s
is a sign vector.

To satisfy KKT conditions, u−Bλk
(λ) and δ(λ) satisfy the following linear

system with the inequality constraint i.e.[
D̃−Bλk

D̃T
−Bλk

(DW )−Bλk

(DW )T−Bλk
0

] [
u−Bλk

(λ)

δ(λ)

]
=

[
D̃−Bλk

(ỹ − λD̃T
Bλk

s)

−λ(DW )TBλk
s

]
(D̃i (ỹ − λD̃T

Bλk
s − D̃T

−Bλk
u−Bλk

(λ))− DiW δ(λ))× si ≥ 0, i ∈ Bλk

(10)
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How to find a dual variable and lagrangian multipliers
(λ ≤ λk)

The solution u−Bλk
(λ) and δ(λ) of the linear system (10) have the following

form:[
û−Bλk

(λ)

δ̂(λ)

]
=

[
û−−Bλk

(λk)

δ̂−(λk)

]
+ (λk − λ)H†

[
D̃−Bλk

D̃T
Bλk

s

(DW )TBλk
s

]
(11)

where û−−Bλk
(λk) and δ̂−(λk) are the dual variable and the lagrangian

multiplier before updating at λk and H =

[
D̃−Bλk

D̃T
−Bλk

(DW )−Bλk

(DW )T−Bλk
0

]
.

To satisfy the KKT conditions, α(λ) and γ(λ) are as followings:

α(λ) = ‖D̃Bλk
(ỹ − D̃T û(λ))− DBλk

W δ̂(λ)‖1

γ−Bλk
(λ) = 0 and γBλk

(λ) =
1

α
(D̃Bλk

(ỹ − D̃T û(λ))− DBλk
W δ̂(λ))
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Event time (λ ≤ λk)

Check the KKT conditions.

As we decrease λ, only two of the KKT conditions can be also violated:

The first is ‖u−Bλk
(λ)‖∞ ≤ λ

Insert the corresponding interior coordinates into the boundary set Bλk .

The second is γTu = ‖u‖∞ = λ
Since γTu = γTBλk

uBλk
and ‖γ‖1 = 1, the second condition is

sign(γBλk
(λ)) = sign(uBλk

(λ)).

There are two possibilities because γ(λ) is related to u(λ) and δ(λ).

δ(λ) changes.
One of the boundary set, which violate the condition, left out the
boundary set Bλk .
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Event time (λ ≤ λk)

‖u−Bλk
(λ)‖∞ ≤ λ

hk+1 = max
i∈−Bλk

ui (λk)− λk × li
−li ± 1

(12)

sign(γBλk
(λ)) = sign(uBλk

(λ))

lvk+1 = max
i∈Bλk

t
(leave)
i (13)

where t
(leave)
i =

{ ξi si
ηi si

if ξi si < 0 and ηi si < 0

0 otherwise.
and αγBλk

= ξ − λη

Thus we can know the next event time λk+1 that the KKT is violated by
calculating a next hit time and a next leave time.

λk+1 = max{hk+1, lvk+1}

Update the boundary set or update the δ according to whether next event
time is a hit time or a leave time, and then calculate variables to satisfy the
KKT.
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At leave time, when does the δ(λ) change?(λ ≤ λk)

At leave time, there are two possibilities.

δ(λk+1) changes.
One of the boundary set left out the boundary set Bλk

.

The coordinate i , which is violated, is left out the boundary set Bλk

temporarily.

Let li be the slope of ui and si be the sign of ui . So if li × si > 1, then leave
the coordinate i out of the boundary set Bλk

, otherwise, δ(λ) changes.

If δ(λk+1) changes, then boudary set (Bλk+1
) is the same as Bλk

, so the
slopes of û and δ does not change.
To find δ(λk+1), we solve the following linear system:

(DW )−Bλk+1
δ(λk+1) = D̃−Bλk+1

(ỹ − D̃T û(λs))− (λs − λk)(DW )−Bλk+1
δl

−DiW δ(λk+1)× si ≥ D̃i (D̃
T û(λs)− ỹ)× si + (λs − λk)DiW δl × si ,

for i ∈ Bλk+1

(14)
where λs = λk+1 − ε
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Exact Dual Solution Path Algorithm

Start with k = 0, λ0 =∞, B0 = ∅, and s = ∅.
Solve the linear block system (9) and λ1 = maxi |ûi |, the corresponding coordinate
is put in B0, and and the sign of the corresponding value is put in s.

While λk > 0:

1. If the prior event is a hit event, calculate (11) to obtain the slope of
û−Bλk

and δ̂, l and δl .
2. Compute the next hit time hk+1 using (12).
3. Compute the next leave time lvk+1 using (13).
4. λk+1 = max(hk+1, lvk+1)
5. If hk+1 > lvk+1, then add the hitting coordinate and sign to Bλk

and s
and move to next iteration.
Otherwise, move to next step.

6. The coordinate i , which is violated, is left out the boundary set Bλk

temporarily (B̃λk
).

7. Calculate (11) to obtain the slope of û−B̃λk
and δ̂, l̃ and δ̃l .

8. If l̃i × si > 1, then leave the coordinate i out of the boundary set Bλk

and assign l̃ , δ̃l to l , δl , otherwise, δ(λ) changes by solving (14).
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Recover a primal solution path from the dual solution path

A primal solution path can be recovered from the dual solution path
through the primal - dual relationships.

The relationship between η and u is:

V η = (XTX )+(XT y − DTu)

This relationship can be obtained by setting the gradient of the
L(η, z , τ, u) with respect to η equal to zero.
The relationship between τ and u is:

D−BW τ = D̃−B(D̃Tu − ỹ)

DBW τ × sign(uB) ≥ D̃B(D̃Tu − ỹ)× sign(uB)

This relationship can be obtained by setting the gradient of the
L(η, z , τ, u) with respect to z equal to zero.
β = V η + W τ
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Recover primal solution

Theorem

Primal variable τ(λ) is same as −δ(λ) which is a lagrange multiplier of dual
variable u(λ).

Through this algorithm, the primal solution, β, has the following relation
with u and δ.

β = V η(λ) + W τ(λ) = (XTX )+(XT y − DTu(λ))−W δ(λ)
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Non-uniqueness of the solution

When the solution of the generalized Lasso problem is given β̂λ, is it a
unique solution?

Clearly, if null(X ) ∩ null(D) 6= {0}, then the solution of the generalized
Lasso problem is not unique for any λ > 0.

But, if null(X ) ∩ null(D) = {0}, the uniqueness of the solutions depends on
λ.

For given β̂λ, we characterize the solutions set.
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Non-uniqueness of the solution

Lemma

If β̂1, β̂2 are the solutions of the generalized Lasso problem at λ, then

1

2
‖y − X β̂1‖22 =

1

2
‖y − X β̂2‖22

This means that β̂2 = β̂1 + γ where γ ∈ null(X ).
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Non-uniqueness of the solution

Let β̂λ be the solution of Generalized Lasso problem at λ.

We can also define an active set : Aλ = {i : dT
i β̂λ 6= 0}.

Theorem (Sufficient and necessary condition for non-uniqueness)

∃γ ∈ null(X ) such that∑
k∈Aλ

sign(dT
k β̂λ)dT

k γ +
∑

k∈−Aλ

|dT
k γ| = 0 (15)

,if and only if the solution of Generalized Lasso problem is not unique at λ.
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The Characterization of Solutions Set

Theorem

Suppose β̂λ is the solution of Generalized Lasso problem at λ. At λ, all of the
solutions (β̃λ) follow the formula:

β̃λ = β̂λ + γ, γ ∈ Γ

where Γ = {γ ∈ null(X ) :
∑

k∈Aλ
sign(dT

k β̂λ)dT
k γ +

∑
k∈−Aλ

|dT
k γ| =

0, sign(dT
k (β̂λ + γ)) = sign(dT

k β̂λ) for k ∈ Aλ}.

For given λ, the signs of dT
k β in the active set of all solutions are unchanged.

We just characterize the set Γ to find all solutions of Generalized Lasso
problem for a given β̂λ.
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The Characterization of Solutions Set

We can characterize the solutions set as follows:{
β̂λ + γ : γ ∈

⋃
s∈S

Γs

}

where Γs = {WHsψ : FsHsψ ≥ 0, MHsψ ≥ N} and
S is a set of all combinations of sign vectors ∈ (−1, 1)|−Aλ|.

Fs = s ×
[
dT
k W

]
k∈−Aλ

where s is a sign vector

Hs is the basis of the null space of 1T
[
sign(dT

k β̂)dT
k W

]
k∈Aλ

+ 1TFs

M = sign
([

dT
k

]
k∈Aλ

β̂λ
)
×
([

dT
k W

]
k∈Aλ

)
N = −sign

([
dT
k

]
k∈Aλ

β̂λ
)
×
([

dT
k

]
k∈Aλ

β̂λ
)

.
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The Characterization of Solutions Set

All Γs have three cases:

All Γs are zero vector set.

The given solution is unique solution.

All Γs are the same set, not zero vector set.

The given solution is the solution with the largest active set.

Some Γs are the same set which is not a zero vector set, and all other
Γs are zero vector sets.

The given solution is not the solution with the largest active set.
The signs of the coordinates contained in the largest active set are
fixed. (by Theorem)

Therefore Γ is same as Γs for a specific s.
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Types of the solutions

We can express other solutions as follows:

β̃λ = β̂λ + Cψ subject to Aψ ≥ B

where A =

[
FsHs

MHs

]
, B =

[
0
N

]
and C =

[
WHs

]
.

We can find the various kinds of solutions

The largest active set solution
The smallest active set solution
l2 minimal solution
l∞ maximal solution
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How to find the sign vector

In order to find Γs which is not a zero vector set, we have to know the signs
of the coordinates (Di β̃ where β̃ has the solution with the largest active set)
contained in the largest active set.

Recall the derivation of the dual function. Since η, z and τ are decoupled in
the Lagrangian function, we can minimize the Lagrangian function with
repect to η, z and τ separately.
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How to find the sign vector

The minimization over z for given u is as follows:

min
z
λ‖z‖1 − uT z

Since the problem is convex problem, the minimizer ẑ satisfy the KKT
condition:

λγ − u = 0

where γ is a subgradient of ‖ · ‖1 at ẑ i.e.

γi =

{
sign(ẑi ) if ẑi (= Di β̂) 6= 0[
− 1, 1

]
if ẑi (= Di β̂) = 0

which is equivalent to

ui =

{
λsign(ẑi ) if ẑi (= Di β̂) 6= 0[
− λ, λ

]
if ẑi (= Di β̂) = 0

This means that the boundary set Bλ contains the active set Aλ.
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l2 minimal solution

We can find the l2 minimal solution by solving the problem:

min
ψ
‖β̂λ + Cψ‖22 subject to Aψ ≥ B

Since this problem is quadratic program and C = WHs is full column rank, if
ψ = −(CTC )−1CT β̂λ does not satisfy the inequality constraint, then the
solution of the problem is on the boundary of the feasible set.

By using the Binding-Direction Primal Active-set algorithm, we find the
solution of the problem.
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l∞ maximal solution

We can find the l∞ maximal solution by solving the problem:

max
ψ
‖β̂λ + Cψ‖∞ subject to Aψ ≥ B

Since ‖ · ‖∞ is the convex function, the maximizer is on the boundary of the
feasible set.
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Simple Example

We characterize other solutions for a given β̂λ of the following two simple
examples.

The two examples have the same y and X , but different penalty matrix D.

y = [ 1000 ], X = [ 1 1 0 ]

1. D =


1 −1 0
0 1 −1

0.1 0 0
0 0.1 0


2. D =

 1 0 0
0 1 0
0 1 −1


The basis matrix W of the null space of X is as following:

W =

 0 − 1√
2

0 1√
2

1 0


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Simple Example

When λ is 2000 for the first example and β̂λ we found is
[

400 400 400
]T

.

An active set A is {3, 4}. And a sign set S is {[1, 1]T , [−1, 1]T , [1,−1]T , [−1,−1]T}.
s = [1, 1]T

Γs =
{

[0 0 0]T
}

s = [−1, 1]T

Γs =
{

[0 0 0]T
}

s = [1,−1]T

Γs =
{

[0 0 0]T
}

s = [−1,−1]T

Γs =
{

[0 0 0]T
}

Therefore, in this example, β̂λ =
[

400 400 400
]T

is a unique solution for a given
λ = 2000.
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Simple Example

We characterize the other solutions when λ is 700 for the second example and β̂λ we

found is
[

200 100 100
]T

.
An active set A is {1, 2}. And a sign set S is {[1], [−1]}.

s = [1]

Γs =
{

[−ψ ψ ψ]T : −100 ≤ ψ ≤ 200
}

s = [−1]

Γs =
{

[−ψ ψ ψ]T : −100 ≤ ψ ≤ 200
}

Therefore, in this example, for a given λ = 700, we can characterize other solutions as
follows:

β̃λ =

 200− ψ
100 + ψ
100 + ψ

 ,−100 ≤ ψ ≤ 200
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Future work

Real data analysis for nonuniqueness solution
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The End
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