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Introduction

Let y € R" be a response vector and X € R"*P be a matrix of predictors.

@ Generalized Lasso Problem(Tibshirani et al., 2011):
Generalized Lasso problem is written as:

1
min ||y — X85 + A DB

BERP 2

where D € R™*P is a specified penalty matrix.
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Introduction

@ The conventional solution path algorithm (rank(X) < p)

e By adding a little € ridge penalty, the algorithm for full rank X matrix
can be applied.
e For a fixed € > 0, consider

1 > 2
min Slly = XBl2 + AlDB + el All2

which is the same as

I T *
mBIn EH}/ —(X )ﬁ”%"‘)‘”Dﬁ”l

where y* = (y7,0)7 and X* = [ :FI }

@ We propose an exact solution path of the Generalized Lasso problem.

@ When the solution is nonuniqueness, we characterize all solution sets
and find various kinds of solutions.
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Dual problem

@ Divide the § as follows:
B=Vn+Wr

where V is the matrix that is orthogonal basis elements for the row

space of X in its columns and W is the matrix that is orthogonal

basis elements for the null space of X in its columns i.e. XW = 0.
@ Primal problem

min 5 ny XBI3 +AIDB|y

Since 8= Vn+ Wr,
min 3 ly = XVl + | DVay + D)
Using the auxiliary variable z, we rewrite this problem as:
KJ’Q;HY—XVUH%Jr)\HZHl subject to DVn + DWT = z
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Dual problem

e Lagrangian function
1
L(n,z,7,u) = Slly = XVn3 + Al|zlls + u” (DVn + DWr - 2)

@ Dual function
D(u) = min L(n, z, 7, u)
T],Z,T

Since 1, z and 7 are decoupled in the Lagrangian function, we can
minimize the Lagrangian function with repect to 7, z and 7 separately.

@ Dual problem

D
g D)
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Dual problem

@ We rewrite the dual problem:

S|y -DT 1
min > N7~ B7ul3 (1)
subject to ||uleo < A, (DW)Tu =0,
where 7 = XX*ty, D = DX* and X+ = (XTX)*XT.
@ A necessary and sufficient condition for u to be a solution of the dual
problem is that u satisfy KKT conditions, since the dual problem is a
convex problem.

@ In order to find a solution path of the dual problem as A moves from
oo to 0, the dual variable u satisfying KKT conditions will be
obtained.

We define a boundary set B).

By ={i:|uj| =M}
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KKT condition

@ For our problem (1), the KKT conditions are
(DDTu); — (Dy); + ayi + (DW&); =0 fori=1,---.m (2)

where u, «, 7y, d are subject to the constraints

Julloo < A (3)
a>0 (4)
a([luflc —A) =0 (5)
vl <1 (6)
vTu=Jufeo (7)
(DW)Tu=0 (8)

Constraints (6) and (7) say that v must be a subgradient of ||u/~
with respect to u.
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Algorithm Overview

@ When A\ = oo, find a dual variable and lagrangian multipliers of the
dual variable satisfying the KKT conditions.

@ When ) < oo, find a dual variable and lagrangian multipliers of the
dual variable satisfying the KKT conditions.

@ When X < )y, find a dual variable and lagrangian multipliers of the
dual variable satisfying the KKT conditions.

o Calculate event time (Ax41).
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How to find a dual variable and lagrangian multipliers

(A = 00)

A= )\0 =0
@ We can ignore the inequality constraint ||ul|cc < A.
@ The KKT conditions can be reduced to the following linear system.

Lomr i ][ 7 ] ©)

@ We solve the above linear system to obtain the dual variable u(\g) and the
lagrangian multiplier 6()\o) satisfying the KKT conditions.
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How to find a dual variable and lagrangian multipliers

(A < 00)

A< A=
@ u(A), 8(A), a(N) and () for satisfying KKT conditions are as follows:

u(A) = 8(Xa), 6(N) = 6(Xo). a(N) =0,
() = { é x sign(di(N)) gt;;—r;irsgemaxj |a;(N)]

@ As the A decreases, the KKT condition ||u(\)|lcoc < A can be violated.

@ Therefore, the A, at which KKT condition is violated, is the maximum value
of the absolute value of the dual variable &i(\). And insert the corresponding
coordinate into boundary set B.

A = max(| ()
By, = By, U{/] argmax [3; (M)}

where By, = 0.
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How to find a dual variable and lagrangian multipliers

(A< )

A< A\

@ The solution is given by 03“(/\) = \s for the boundary coordinates where s
is a sign vector.

@ To satisfy KKT conditions, u_g,, (1) and §()) satisfy the following linear
system with the inequality constraint i.e.
573“51—5“ (DW)fzsAk [ u,BAk()\) ] _ Dfok(}N’_)\DgAkS)
(DW)Ts, 0 5(N) ~ADOW)E, s

(Di(7 = AD{, s — DI, u-p, (N) — DiIWS(N)) x 5 >0, i€ By,
(10)
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How to find a dual variable and lagrangian multipliers

(A< )

@ The solution u_g, (A) and 5(A) of the linear system (10) have the following
form:

[ 05, (\) ] _ [ gimkuk) O WH

A AT
D—BAkTDB,\kS (11)
(DW)B,\kS
where {1~ M) and 6 (M) are the dual variable and the lagrangian

By,

D*B/\k DIBM (DW)*BA,( 1

multiplier before updating at Ay and H = (DW)IBM 0

@ To satisfy the KKT conditions, a()\) and () are as followings:

a(A) = ||Ds,, (7 = DTa(N) = Ds,, Wo(N)|x

vy, (V) =0 and s, (A) = ~(Bg, (7 — DTa(N) - D, WE(N))

(0%
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Event time (A < Ay)

Check the KKT conditions.

@ As we decrease A, only two of the KKT conditions can be also violated:

o The firstis [[u_g,, (A)[lc <A
@ Insert the corresponding interior coordinates into the boundary set B, .

o The second is 7Y u = [[ulloc = A
Since yTu = “ngk up,, and [|v]ly = 1, the second condition is
sign(vs,, (1)) = sign(us,, (1)).
There are two possibilities because () is related to u(\) and 6()).
@ 0(A) changes.
@ One of the boundary set, which violate the condition, left out the
boundary set By, .
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Event time (A < Ay)

o [u—p, Moo <A

u,-()\k) — >\k X /,'
h = _ 12
UL N | (12)
o sign(ys,, (1)) = sign(uz,, (1))
| _ t(leave) 13
Vit = max & (13)

NiSi

&isi;
leav. s f ¢is; < 0 and n;s; < 0
where ti( "= { 0 otherwise. and ap,, =& —An

@ Thus we can know the next event time A1 that the KKT is violated by
calculating a next hit time and a next leave time.
>\k+1 = max{hk+1, IVk+1}

@ Update the boundary set or update the § according to whether next event

time is a hit time or a leave time, and then calculate variables to satisfy the
KKT.
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At leave time, when does the d(\) change?(\ < \y)

@ At leave time, there are two possibilities.

o (Ak41) changes.
e One of the boundary set left out the boundary set B, .

@ The coordinate 7, which is violated, is left out the boundary set 5,
temporarily.

@ Let /; be the slope of u; and s; be the sign of u;. So if [; X s; > 1, then leave
the coordinate i out of the boundary set B,,, otherwise, §(\) changes.

@ If 0(Ai41) changes, then boudary set (By, ,) is the same as B,,, so the
slopes of & and § does not change.
To find 6(Ak+1), we solve the following linear system:

(DW)_5,, (A1) = D_g, (7 — DTd(As)) — (As — A)(DW) 5, 6
—D; W§()\k+1) X S > D,(DTﬁ(AS) — }7) X S+ (>\s — )\k)D,' Wé, x s;,
for i€ By, ,
(14)
where \g = A1 — €
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Exact Dual Solution Path Algorithm

@ Start with k =0, Ao = 00, Bo =0, and s = 0.

@ Solve the linear block system (9) and A1 = max; |dj|, the corresponding coordinate
is put in By, and and the sign of the corresponding value is put in s.

@ While Ay > 0:

1. If the prior event is a hit event, calculate (11) to obtain the slope of

ﬁ—BAk and 3, | and 6.

Compute the next hit time hy41 using (12).

Compute the next leave time lviy1 using (13).

)\k+1 = max(hk+1, /Vk+1)

If hiy1 > Iviya, then add the hitting coordinate and sign to By, and s

and move to next iteration.

Otherwise, move to next step.

6. The coordinate i, which is violated, is left out the boundary set B},
temporarily (By,).

7. Calculate (11) to obtain the slope of f’—éxk and §, T and §;.

ok wN

8. Ifl; xs > 1, then leave the coordinate i out of the boundary set B,
and assign /, d; to I, &;, otherwise, §(\) changes by solving (14).
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Recover a primal solution path from the dual solution path

@ A primal solution path can be recovered from the dual solution path
through the primal - dual relationships.

e The relationship between 1 and u is:
V= (X"X)"(XTy — D" u)

This relationship can be obtained by setting the gradient of the
L(n, z, T, u) with respect to n equal to zero.
e The relationship between 7 and u is:

D,BWT = D,B(DTU —)7)
DWr x sign(ug) > Dg(D"u — 7) x sign(ug)

This relationship can be obtained by setting the gradient of the
L(n, z, T, u) with respect to z equal to zero.
o B=Vn+Wr
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Recover primal solution

Primal variable 7(\) is same as —(\) which is a lagrange multiplier of dual
variable u(\).

@ Through this algorithm, the primal solution, 3, has the following relation
with u and 4.

B=Vn(\)+ Wr(A) = (XTX)"(XTy = DTu(N)) = W())
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Non-uniqueness of the solution

@ When the solution of the generalized Lasso problem is given B, is it a
unique solution?

o Clearly, if null(X) Nnull(D) # {0}, then the solution of the generalized
Lasso problem is not unique for any A > 0.

@ But, if null(X) Nnull(D) = {0}, the uniqueness of the solutions depends on
A

@ For given (3, we characterize the solutions set.
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Non-uniqueness of the solution

If Bl, 32 are the solutions of the generalized Lasso problem at X, then

1 A 1 ~
§||y - XB5 = §||y — XBa|13

@ This means that 5, = 1 -+~ where € null(X).
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Non-uniqueness of the solution

o Let 3, be the solution of Generalized Lasso problem at A.

@ We can also define an active set : Ay = {i : d]" 3\ # 0}.

Theorem (Sufficient and necessary condition for non-uniqueness)

Iy € null(X) such that

> sign(dy B )di v+ Y 1diyl=0 (15)
ke Ax ke—Ax

,if and only if the solution of Generalized Lasso problem is not unique at \.
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The Characterization of Solutions Set

Suppose /3’,\~ is the solution of Generalized Lasso problem at \. At A, all of the
solutions (3 ) follow the formula:

B =B+, yel

where I = {y € null(X) : >, 4, sign(d Bx)d] v + Yoke_a, ldin =
0, sign(d, (Bx + 7)) = sign(d/ B,) for k € A,}.

@ For given ), the signs of d// 3 in the active set of all solutions are unchanged.

@ We just characterize the set I to find all solutions of Generalized Lasso
problem for a given ).
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The Characterization of Solutions Set

@ We can characterize the solutions set as follows:

{Bx+7 : VGUFS}

seS

where Ty = {WH) : F.Hytb > 0, MHyb > N} and
S is a set of all combinations of sign vectors € (—1, 1)l

Fs =s X [d,(T W] where s is a sign vector
ke—Ax

Hs is the basis of the null space of 17 [sign(dTA)dkT WL “ +17F,
AN

M = sign (], B0) (17 W], )
W= —sign ([0, Bo) % ([]ca, B2):
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The Characterization of Solutions Set

@ All I's have three cases:

o All ' are zero vector set.
@ The given solution is unique solution.
o All ' are the same set, not zero vector set.
@ The given solution is the solution with the largest active set.

o Some 5 are the same set which is not a zero vector set, and all other
s are zero vector sets.

@ The given solution is not the solution with the largest active set.
@ The signs of the coordinates contained in the largest active set are
fixed. (by Theorem)

@ Therefore I is same as s for a specific s.
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Types of the solutions

@ We can express other solutions as follows:

BA = 3>\ + Cy subject to Ay > B

FsH, 0
whereA:[MHS ]B:[N}and C:[ WHS].

@ We can find the various kinds of solutions

The largest active set solution
The smallest active set solution
I minimal solution

Iso maximal solution

Presented by Jaesung Hwang (SNU) Doctorial dissertation February 18, 2019 29/39



How to find the sign vector

@ In order to find s which is not a zero vector set, we have to know the signs
of the coordinates (D;3 where 3 has the solution with the largest active set)
contained in the largest active set.

@ Recall the derivation of the dual function. Since 1, z and 7 are decoupled in
the Lagrangian function, we can minimize the Lagrangian function with
repect to 17, z and 7 separately.
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How to find the sign vector

@ The minimization over z for given u is as follows:
min\|z|y —u'z
z

Since the problem is convex problem, the minimizer Z satisfy the KKT

condition:
M—u=0
where v is a subgradient of || - ||; at 2 i.e.
sign(2;)  if 2i(= Dif) #0
7= {f 1,1] if 5(= D;8) =0
which is equivalent to
Xsign(2;) if 2(= D) #0
= [f A,A} if %(= D;f) =0

@ This means that the boundary set B, contains the active set Aj.
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I, minimal solution

@ We can find the L, minimal solution by solving the problem:

mdin Bx + C||3  subject to Ay > B

@ Since this problem is quadratic program and C = WH; is full column rank, if
1 = —(CTC)~1CT B, does not satisfy the inequality constraint, then the
solution of the problem is on the boundary of the feasible set.

@ By using the Binding-Direction Primal Active-set algorithm, we find the
solution of the problem.

non-feasible region
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I, maximal solution

@ We can find the I, maximal solution by solving the problem:

m£X||B>\ + Ct||ss  subject to Ay > B

@ Since || - ||oo is the convex function, the maximizer is on the boundary of the
feasible set.
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Simple Example

@ We characterize other solutions for a given [ of the following two simple

examples.

@ The two examples have the same y and X, but different penalty matrix D.

2. D=

y=[1000], X=[1 1 0]
1 -1 o0
o 1 -1
01 0 O
| 0 01 0
[1 0 0
01 0
|0 1 -1
@ The basis matrix W of the null space of X is as following:
0o —-L1
V2
1 0
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Simple Example

When X is 2000 for the first example and (35 we found is [ 400 400 400 ]T.
An active set A is {3,4}. And a sign set Sis {[1,1]",[-1,1]",[1,-1]",[-1,-1]"}.

® s=[1,1]"
rs:{[o 0 O]T}
o s=[-1,1]"
rsz{[o 0 o]T}
e s=[1,-1]"

rsz{[o 0 o]T}
o s=[-1,-1"

r= {[o 0 O]T}

Therefore, in this example, BA = [ 400 400 400 ]T is a unique solution for a given
A = 2000.
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Simple Example

We characterize the other solutions when X is 700 for the second example and 3 we
found is [ 200 100 100 | .
An active set A is {1,2}. And a sign set S is {[1], [-1]}.

@ s=1[1]
ro={-v ¢ v]":-100 <y <200}
@ s=[-1]

ro={l-v ¢ v]”:-100 <y <200}

Therefore, in this example, for a given A = 700, we can characterize other solutions as
follows:
200 — v
Br=| 100+ ,—100 < ¢ < 200
100 + ¢
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Future work

@ Real data analysis for nonuniqueness solution
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The End
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