BAYESIAN CLINICAL TRIALS: WHY BOTHER?

Thomas A. Louis, PhD Department of Biostatistics Johns Hopkins Bloomberg School of Public Health www.biostat.jhsph.edu/~tlouis/ tlouis@jhsph.edu

BAYESIAN ANALYSIS

- Design a study (possibly using a Bayesian approach)
- Specify a (hyper) Prior (possibly using the design information)
- Collect data and compute a likelihood
- Bayes' theorem \Rightarrow Posterior Distribution
- **5** Do something with it, possibly structured by a loss function
 - (...)²: Posterior Mean
 - | ... |: Posterior median
 - $0/1 + c \times volume$: Tolerance Interval (CI)
 - 0/1: Hypothesis Test/Model Choice
 - Steps 1-3 should depend on goals
 - Steps 4 & 5 obey the rules of probability
 - Step 4 doesn't know what you are going to do in Step 5

Evidence, then decisions

・ 同 ト ・ ヨ ト ・ ヨ ト …

Bother when you want

- Excellent Bayesian performance
- Excellent Frequentist performance
 - use priors and loss functions as tuning parameters
- To strike an effective Variance/Bias trade-off
- Full uncertainty propagation
- To design, conduct and analyze complex studies
- Sometimes it isn't worth the bother
- Sometimes you are (almost) forced into it

Design

- Everyone is a Bayesian in the design phase
- All evaluations are "preposterior," integrating over both the data (a frequentist act) and the parameters (a Bayesian act)
 - Rubin (1984), "A Bayesianly justifiable frequentist calculation"
- A frequentist designs to control frequentist risk over a range of parameter values
- A Bayesian designs to control preposterior (Bayes) risk
- Bayesian design is effective for both Bayesian and frequentist goals

Bayesian Design to Control Frequentist CI Length

- Variance of a single observation: σ^2
- L is the maximal total length of the CI length
- For two-sided coverage probability (1α) :

$$\mathsf{n}(\sigma,\mathsf{L},\alpha) = 4\mathsf{Z}^2 \left(\frac{\sigma}{\mathsf{L}}\right)^2$$

- $\bullet\,$ If we don't know $\sigma^2,$ then CI length is a RV
- Can do a series of "what ifs" or a "worst case"
- Can use a probability distribution (Bayes): [σ^2 | prior]
- Can also adapt: $[\sigma^2 | \mathbf{Y}_{available}, prior]$

Frequentist CI Length: The Bayesian approach

• Background data or prior elicitation provide,

$$\begin{array}{ll} & [\sigma^2|{\rm data/opinion}] & \sim & G \ \{{\rm e.g.,\ log-normal}\} \\ & E(\sigma^2|{\rm data/opinion}) & = & \bar{\sigma}^2 \\ & CoefVar(\sigma^2|{\rm data/opinion}) & = & \eta \\ \\ \bullet \ {\rm Goals:} & E_G({\rm Cl\ length}|{\rm design}_n) < L \\ & pr_G({\rm Cl\ length} > L|{\rm design}_n) \leq \gamma \end{array}$$

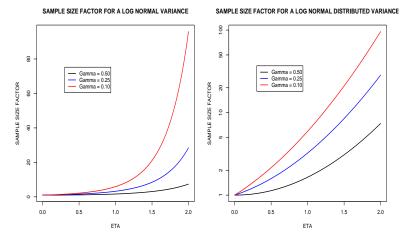
• Similarly, for testing:

$$pr_G(\text{Power} < 0.84 | \text{design}_n) \le \gamma)$$

• More generally,

$$pr_G(Bayes risk > R^* | design_n) \le \gamma$$

CI Length: Sample size factors relative to knowing σ



• Monitor to adjust sample size in the context of accruing information on σ^2

Clinical Trials: Past, Present & Future T. A. Louis: Bayesian Clinical Trials page 13

$$\begin{array}{lll} \left[\boldsymbol{\theta} \mid \boldsymbol{\eta} \right] & \sim & g(\cdot \mid \boldsymbol{\eta}) \quad \text{Prior} \\ \left[\mathbf{Y} \mid \boldsymbol{\theta} \right] & \sim & f(\mathbf{y} \mid \boldsymbol{\theta}) & \text{Likelihood} \\ \\ g(\boldsymbol{\theta} \mid \mathbf{y}, \, \boldsymbol{\eta}) & = & \frac{f(\mathbf{y} \mid \boldsymbol{\theta})g(\boldsymbol{\theta} \mid \boldsymbol{\eta})}{f_G(\mathbf{y} \mid \boldsymbol{\eta})} \quad \text{Posterior} \\ \\ f_G(\mathbf{y} \mid \boldsymbol{\eta}) & = & \int f(\mathbf{y} \mid \boldsymbol{\theta})g(\boldsymbol{\theta} \mid \boldsymbol{\eta})d\boldsymbol{\theta} \quad \text{Marginal} \end{array}$$

Or, Bayes empirical Bayes via a hyper-prior (H),

$$g(oldsymbol{ heta}|\mathbf{y}) = \int g(oldsymbol{ heta}|\mathbf{y},oldsymbol{\eta}) h(oldsymbol{\eta}|\mathbf{y}) doldsymbol{\eta}$$

4 E b

Compound Sampling, the Objectivity Enabler Shrinkage, Variance Reduction, Borrowing Information

Multiple draws from the prior: Gaussian Case

$$\begin{array}{rcl} \theta_1, \dots, \theta_K & \text{iid} & \mathsf{N}(\mu, \tau^2) \\ [Y_k \mid \theta_k] & \text{ind} & \mathsf{N}(\theta_k, \sigma_k^2) \\ [\theta_k \mid Y_k] & \sim & \mathsf{N}\left(\mu + (1 - B_k)(Y_k - \mu), (1 - B_k)\sigma_k^2\right) \\ B_k & = & \frac{\sigma_k^2}{\sigma_k^2 + \tau^2} \end{array}$$

EB when $\sigma_{k}^{2} \equiv \sigma^{2}$ (column means with equal n): $\hat{\mu} = Y_{\bullet}$ $\hat{\tau}^{2} = (S^{2} - \sigma^{2})^{+} = \sigma^{2}(F - 1)^{+}$

- * 同 * * き * * き * … き

Toxoplasmosis Rates in Guatemala and Honduras top(MLEs), whiskers(SEs), bottom(Posterior Means)



• The relatively high-SE estimates are pulled in more, reducing MSE by striking an effective variance/bias trade-off

Historical Controls

	С	Е	Total
Tumor	0	3	3
No Tumor	50	47	97
	50	50	100

- Fisher's exact one-sided P = 0.121
- But, scientists get excited:
 - "The 3 tumors are Biologically Significant"
- Statisticians protest:
 - "But, they aren't Statistically Significant"

- Same species/strain, same Lab, recently
- 0 tumors in 450 control rodents

Pc	Pooled Analysis				
	Total				
Tumor	0	3	3		
No Tumor	500	47	547		
	500	50	550		

- Fisher's exact one-sided $P \doteq .0075$
- Biological and Statistical significance!

- Control rates are drawn from a $Beta(\mu, M)$
- $\bullet\,$ Use all of the data to estimate μ and M
- Give the historical data weight equivalent to a sample size of \widehat{M} with rate $\widehat{\mu}$
- Female, Fisher F344 Male Rats, 70 historical experiments (Tarone 1982)

Tumor	N	Â	$\hat{\mu}$	$\frac{\widehat{M}}{N}$
Lung	1805	513	.022	28.4%
Stromal Polyp	1725	16	.147	0.9%

• Adaptive down-weighting of history

Design and Analysis for Cluster Randomized Studies

Setting

- Compare two weight loss interventions
- Randomize clinics in pairs, one to A and one to B
- Compute clinic-pair-specific comparisons combine over pairs
- How to design and how to analyze, especially with a small number of clinics?

The equal sample size, unpaired case

- There are K clusters
- Within-cluster sample sizes are $n_k \equiv n$
- The V(treatment comparison), when computed under the assumption of independence is V_{ind}
- Adjust this by the among-clinic variance component

$$\begin{array}{rcl} V_{icc} &=& V_{ind} \times [\mathbf{1} + \rho \, (\mathbf{n} - \mathbf{1})] = V_{ind} \times [\text{design effect}] \\ \rho &=& \tau^2 / \sigma^2 + \tau^2 \ (\text{the ICC}) \\ \tau^2 &=& \left(\frac{\rho}{1 - \rho}\right) \sigma^2 \quad (\text{the among-clinic variance}) \\ \sigma^2 &=& \text{single-observation variance} \end{array}$$

Design and Analysis Considerations

• In the paired-clinic case, to compute

 $V_{icc} = V$ (treatment comparison),

need to account for the following variances:

- Individual measurement (σ^2)
 - The trial will provide sufficient information
- Among-clusters: within (τ_w^2) and between (τ_b^2) cluster pairs with $(\tau^2 = \tau_w^2 + \tau_b^2)$

The need for an informative prior

- With a small number of clusters, the trial will provide little information on τ^2 and even less information on $\gamma = \tau_b^2/(\tau_w^2 + \tau_b^2)$
- Without informative priors, an "honest" computation of posterior uncertainty (one that integrates over uncertainty in τ^2 and γ) will be so large as to be useless
- Therefore, either don't do the study or use informative priors to "bring in" outside information
- Fortunately, other weight loss studies provide credible and informative prior information on τ^2 , but not so for γ
 - For $\gamma,$ we need to rely primarily on expert opinion and sensitivity analysis

(4月) (1日) (日)

A Bayesian Model

• Use an informative, data-based prior for τ^2 and a small-mean, small-variance prior for γ

$$\begin{array}{rcl} \tau^2 & \sim & \mathsf{IG}:=\tau_{50}^2 \text{ with } \tau_{95}^2=2 \times \tau_{50}^2\\ [\gamma \mid \epsilon, M] & \sim & \mathsf{Beta}(\epsilon, M)\\ E(\gamma) & = & \epsilon, V(\gamma)=\epsilon(1-\epsilon)/M \end{array}$$

- Take the "best estimates" of (σ^2, ρ) from other cluster-randomized studies of weight change and obtain $\sigma^2 \approx (0.34)^2$, likely $\hat{\rho}$: (0.006, 0.010, 0.050)
- $\Rightarrow 10^4 \times \tau^2 = (7.0, 11.7, 60.8),$ $10^4 \tau_{50}^2 = 11.7, 10^4 \tau_{95}^2 = 23.4$

• Use $\epsilon \approx 0.10$ and a relatively large M = 15

- The 90th percentile is approximately 0.20
- Conservative in that there is little gain from pairing

Addressing non-standard and otherwise challenging goals Bayesians have a corner on the market

- Ranks and Histograms
- Complicated, non-linear models
- Complicated goals like adaptive design
- Regions
 - Bioequivalence & non-Inferiority
 - Inherently bivariate treatment comparisons
 - Adaptive design based on relations among parameters

- Δ is the treatment difference
- (-Δ_{*}, Δ^{*}) is the interval of equivalence (determined by clinical/biologic/policy considerations)

Bio-equivalence: $-\Delta_* \leq \Delta \leq \Delta^*$

Non-inferiority: $-\Delta_* \leq \Delta$ (negative Δ is inferior)

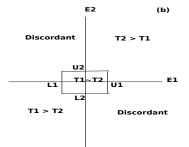
- Compute relevant posterior probabilities and design so that these will be sufficiently extreme under parameter scenarios of interest
- Can use this formalism to produce desired frequentist properties

Inherently bivariate treatment comparisons

- Compare two treatments based on a bivariate outcome
 - Viral load and CD₄
 - Efficacy and SAE incidence
- Construct R^2 regions of equivalence and advantage
- Inherently R² regions can capture clinically important trade-offs
 - But, only generalized rectangles result from combining single-endpoint, univariate regions
- The Bayesian formalism is needed to compute,

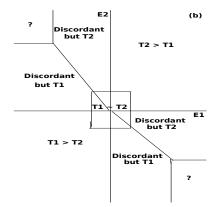
pr (region | data)

Combining endpoint-specific, univariate regions



∢ ≣⇒

Inherently R² Regions



イロト イヨト イヨト イヨト

æ

Adaptive design based on relations among parameters

• Single parameter assessments

- 1 if $pr(\theta > \theta_{safety} > 0 \mid data) > 0.20$, stop
- 2) if $pr(\theta < \theta_{efficacy} < 0 \mid data) > 0.98$, stop
- if pr(either 1 or 2 by end of study | data) > 0.90, continue as is, otherwise, either stop for futility or increase accrual/clinics
 - Requires simulating futures, conditional on current information
 - This requires assumptions on accrual, dropouts, cross-overs, ...
- Parameter relations
 - if $\operatorname{pr}(\operatorname{\mathsf{Rel}}(heta_1, heta_2)>0\mid \mathsf{data})>0.98$, stop

Don't insist on strict frequentist goals

・ 同 ト ・ ヨ ト ・ ヨ ト

Continue or stop a dose

- Start with doses (d_1, \ldots, d_m)
- $P(d, \theta) = pr(favorable response | d, \theta)$
 - If $P(d, \theta \mid \text{data}) \ge 0.75$, continue accruing to the dose
 - If $P(d, \theta \mid \mathsf{data}) < 0.75$, stop accruing to the dose
- More generally, when allocating to doses, trade-off gaining information on θ and doing the best for the next patient

Allocation on Outcome

- Controversial in clinical trials, but can be effective
- Less controversial: Adaptive randomization stratification
- Best approaches use Bayesian structuring for either Bayes or Frequentist goals

pprox Louis 1975 Biometrika

- Gaussian Responses, treatments T_A and T_B
- SPRT Stopping based on the likelihood-ratio (L_{mn}) after *m* responses T_A and *n* on T_B
 - Continue if $0 < A < L_{mn} < B < \infty$
 - No maximum accrual
- For non-anticipating, adaptive allocation rules, frequentist type I and II errors are controlled

Approximately the Louis (1975) rule

• $\pi_{mn} = pr(T_B > T_A \mid \text{data}) = L_{mn}/(1 + L_{mn})$ for a 50/50 prior

• Can use $\pi_{00} \neq 0.5$, but equipoise requires close to 0.5

- Select an imbalance parameter: $0.5 \le \phi < 1.0$
- Allocate to keep

$$m/(m+n) \approx \phi \pi_{mn} + (1-\phi)(1-\pi_{mn})$$

• 3 > 1

$100\phi ightarrow$	50 55		70	
M_{ϕ}	78.2	87.6	127.5	
N_{ϕ}	77.7	71.7	57.2	
$M_{\phi} + N_{\phi}$	155.9	159.3	184.7	
Cost	0	3.4	28.8	
Benefit	0	6.0	20.5	

• M_{ϕ} and N_{ϕ} are expected sample sizes

• Cost =
$$(M_{\phi} + N_{\phi}) - (M_{0.5} + N_{0.5})$$

• Benefit =
$$N_{0.5} - N_{\phi}$$

Bayes & Multiplicity

- The prior to posterior mapping doesn't "know" about multiple comparisons
- With additive, component-specific losses each comparison is optimized separately with no accounting for the number of comparisons
- However, use of a hyper-prior (or EB) links the components since the posterior "borrows information"
 - Inducing shrinkage as a multiplicity control
- If collective penalties are needed, use a multiplicity-explicit loss function

The k-ratio, Z test

RE ANOVA

•
$$\theta_1, \dots, \theta_K$$
 iid $N(\mu, \tau^2)$
• $[Y_{ik} \mid \theta_k]$ ind $N(\theta_k, \sigma^2)$
• $[\theta_k \mid Y_{.k}] \sim N\left(\mu + (1-B)(Y_{.k} - \mu), (1-B)\frac{\sigma^2}{n}\right)$
 $F = 1/\hat{B}$

Compare columns 1 and 2:

$$Z_{12}^{Bayes} = Z_{12}^{freq} \left\{ \frac{(F-1)^{+}}{F} \right\}^{\frac{1}{2}} = \left(\frac{\sqrt{n}(Y_{.1}-Y_{.2})}{\hat{\sigma}\sqrt{2}} \right) \left\{ \frac{(F-1)^{+}}{F} \right\}^{\frac{1}{2}}$$

- ∢ ≣ →

æ

Comments

- The magnitude of F adjusts the test statistic
- For large K, under the global null hypothesis ($\tau^2 = 0$), pr[all $Z_{ij} = 0$] ≥ 0.5
- The FW rejection rate is much smaller than 0.5
- "Scoping" is important because the number of candidate comparisons influences the value of $\hat{\mu}$ and \hat{B} and performance more generally
- Non-additive loss functions can be used

• e.g., 1 + 1 = 2.5

• These link inferences among components in addition to that induced by shrinkage

・ 同 ト ・ ヨ ト ・ ヨ ト

- Randomized between Referred Care (RC) and Stepped Care (SC)
- Outcome: 5-year death rate, overall and in 12 strata
- Y = 1000 log[OR(SC:RC)]
- Strata
 - Initial diastolic blood pressure
 - I = 90-104 II = 105-114 $III = \ge 115$ $P_{2,2,2} = (P_{2,2})(M_{2,2})$
 - Race (B/W)
 - Gender (F/M)

HDFP Results

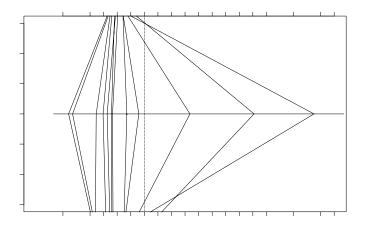
G	roup	Y	$\hat{ heta}$	1 - B	$\hat{\sigma}$	PSD
Ι	BM	-129	-157	54	170	125
	BF	-304	-240	44	206	137
	WM	-242	-220	59	153	117
	WF	-355	-253	39	231	144
11	BM	-274	-213	29	290	155
	BF	-529	-266	23	337	161
	WM	-41	-156	22	349	162
	WF	809	-61	13	479	171
	BM	-558	-273	23	337	161
	BF	-235	-197	18	389	166
	WM	336	-122	13	483	171
	WF	1251	-103	6	730	178

All posterior means are negative

イロト イヨト イヨト

3

HDFP Subgroup Analysis: Ensemble Estimates $(1-B)^{\frac{1}{2}}$ on data rather than (1-B)



Top:PMs Middle:MLEs Bottom:Ensemble

(4回) (日) (日)

3

CPCRA-TOXO: Prevention of Toxoplasmosis

- Eligibility
 - Either an AIDS defining illness or CD4 < 200
 - A positive titre for toxoplasma gondii
- Originally designed with four treatment groups
 - Active & placebo clindamycin, 2:1
 - Active & placebo pyrimethamine, 2:1
- The clindamycin arm was stopped after a few months
- We look at PYRI vs Placebo

WE

- Used the Cox model
 - Adjusted for baseline CD4
- Elicited priors from three HIV/AIDS clinicians, one PWA conducting AIDS research and one AIDS epidemiologist
- Monitored the trial after-the-fact
 - The DSMB monitored it during-the-fact
- "Stopped" when the posterior probability of benefit or the posterior probability of harm got sufficiently high
- Used a variety of prior distributions, including an equally-weighted mixture of the five elicited priors

Partial likelihood:

$$\mathcal{L}(heta_1, heta_2) = \prod_{j=1}^d \left(rac{e^{ heta_1 z_{1j} + heta_2 z_{2j}}}{\sum_{
u \in \mathcal{R}_j} e^{ heta_1 z_{1
u} + heta_2 z_{2
u}}}
ight)$$

- d is the number of individuals experiencing the endpoint (death or TE)
- \mathcal{R}_j is the j^{th} risk set
 - The collection of individuals alive and in the study immediately preceding the jth endpoint
- Covariates
 - Treatment group status: $z_{1j} = 1$ or 0 a.a. person *j* received pyrimethamine or placebo
 - CD4 cell count at study entry: (z_{2j})
- Negative values of θ_1 indicate a benefit for pyrimethamine

Prior Distributions

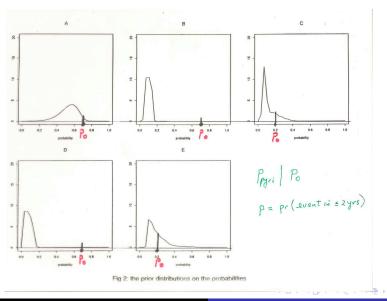
- We put a flat prior on the CD4 effect (θ_2)
- We elicited priors for the Pryimethamine effect (θ_1)

Elicitation

- Ask about potential observables
- P = pr[event in two years]
- P_0 = best guess for the placebo
 - mode, median, mean
- Then, distribution of $P_{pyri} \mid P_0$
 - percentiles
 - draw a picture
- Convert to Cox model parameter:

$$heta_1 = \log(1 - P_0) - \log(1 - P_{pyri})$$

Elicited Priors



Clinical Trials: Past, Present & Future T. A. Louis: Bayesian Clinical Trials

Actual TOXO Monitoring

- Monitored for file closing dates: 01/15/91, 07/31/91, and 12/31/91
- At its final meeting the board recommended stopping
- The pyrimethamine group had not shown significantly fewer TE events and the low overall TE rate made a statistically significant difference unlikely to emerge.
- Also, an *increase* in the number of deaths in the pyrimethamine group was noted

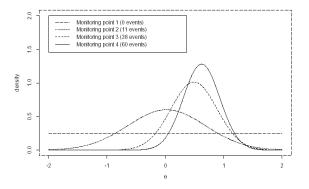
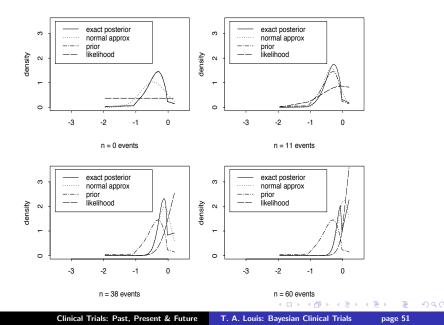
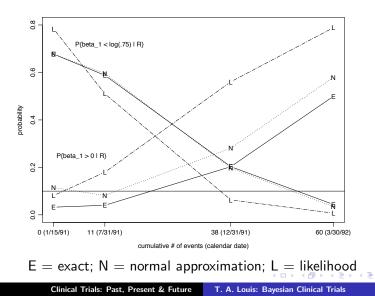


Figure 3: Posterior for the treatment effect under a flat prior, TE trial data. Endpoint is TE or death; Covariate is baseline CD4 count

Various Posterior Distributions



Posterior Probabilities of regions (Bayes can take longer to stop!)



page 52

- The elicited priors bear almost no resemblance to the eventual data
- Our experts believed
 - That TE is common in this patient population
 - That pyrimethamine has a substantial prophylactic effect
- Yet, eventually the data overwhelmed the elicited priors

Would it have been ethical to wait so that these experts were convinced?

Summary

- There have been many Bayesian successes, but much remains to be done
 - Methodologically
 - Sociologically
- CDRH, its encouragement and guidance have accelerated adoption and innovation
 - Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials
- The CDRH stem cell is seeding metastases to other FDA Centers

Incourage Bayesian design for frequentist analysis

- To promote formal assembly of prior information
- To produce realistic designs in the context of important uncertainties
- Encourage use of the Bayesian formalism to develop all monitoring plans
 - Sample size adjustment, accrual termination, follow-up termination (for efficacy or curtailment)
 - Priors and losses as tuning parameters for frequentist goals
 - Bayesian goals
- Sevaluate and introduce fully Bayesian designs and analyses

Closing

- Potential Bayesian benefits are substantial, but validity and effectiveness require expertise and care
- Bayes isn't always worth the bother, but acceptance and benefits burgeon
- The philosophy and formalism are by no means panaceas
- There are no free lunches in statistics

Happily, there are a broad array of reduced-price meals

Many based on Bayesian recipes!