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BAYESIAN ANALYSIS

1 Design a study (possibly using a Bayesian approach)

2 Specify a (hyper) Prior (possibly using the design information)

3 Collect data and compute a likelihood

4 Bayes’ theorem ⇒ Posterior Distribution
5 Do something with it, possibly structured by a loss function

(. . .)2: Posterior Mean
| . . . |: Posterior median
0/1 + c × volume: Tolerance Interval (CI)
0/1: Hypothesis Test/Model Choice

Steps 1-3 should depend on goals

Steps 4 & 5 obey the rules of probability

Step 4 doesn’t know what you are going to do in Step 5

Evidence, then decisions

Clinical Trials: Past, Present & Future T. A. Louis: Bayesian Clinical Trials page 3



Bother when you want

Excellent Bayesian performance

Excellent Frequentist performance

use priors and loss functions as tuning parameters

To strike an effective Variance/Bias trade-off

Full uncertainty propagation

To design, conduct and analyze complex studies

Sometimes it isn’t worth the bother

Sometimes you are (almost) forced into it
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Design

Everyone is a Bayesian in the design phase

All evaluations are “preposterior,” integrating over both the
data (a frequentist act) and the parameters (a Bayesian act)

Rubin (1984), “A Bayesianly justifiable frequentist calculation”

A frequentist designs to control frequentist risk over a range
of parameter values

A Bayesian designs to control preposterior (Bayes) risk

Bayesian design is effective
for both Bayesian and frequentist goals
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Bayesian Design to Control Frequentist CI Length

Variance of a single observation: σ2

L is the maximal total length of the CI length

For two-sided coverage probability (1 − α):

n(σ, L, α) = 4Z2

(
σ

L

)2

If we don’t know σ2, then CI length is a RV

Can do a series of “what ifs” or a “worst case”

Can use a probability distribution (Bayes): [σ2 | prior ]

Can also adapt: [σ2 | Yavailable , prior]
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Frequentist CI Length: The Bayesian approach

Background data or prior elicitation provide,

[σ2|data/opinion] ∼ G {e.g., log-normal}

E (σ2|data/opinion) = σ̄2

CoefVar(σ2|data/opinion) = η

Goals:
EG (CI length|designn) < L

prG (CI length > L|designn) ≤ γ

Similarly, for testing:

prG (Power < 0.84|designn) ≤ γ)

More generally,

prG (Bayes risk > R∗|designn) ≤ γ
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CI Length: Sample size factors relative to knowing σ
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The Basic, Hierarchical Model

[θ | η] ∼ g(·|η) Prior

[Y|θ] ∼ f (y|θ) Likelihood

g(θ|y, η) =
f (y|θ)g(θ|η)

fG (y|η)
Posterior

fG (y|η) =

∫
f (y|θ)g(θ|η)dθ Marginal

Or, Bayes empirical Bayes via a hyper-prior (H),

g(θ|y) =

∫
g(θ|y,η)h(η|y)dη
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Compound Sampling, the Objectivity Enabler
Shrinkage, Variance Reduction, Borrowing Information

Multiple draws from the prior: Gaussian Case

θ1, . . . , θK iid N(µ, τ2)

[Yk | θk ] ind N(θk , σ2
k)

[θk | Yk ] ∼ N
(
µ + (1 − Bk)(Yk − µ), (1 − Bk)σ2

k

)

Bk =
σ2

k

σ2
k + τ2

EB when σ2
k ≡ σ2 (column means with equal n):

µ̂ = Y•

τ̂ 2 = (S2 − σ2)+ = σ2(F − 1)+
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Toxoplasmosis Rates in Guatemala and Honduras
top(MLEs), whiskers(SEs), bottom(Posterior Means)

.

The relatively high-SE estimates are pulled in more, reducing
MSE by striking an effective variance/bias trade-off
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Historical Controls

C E Total

Tumor 0 3 3
No Tumor 50 47 97

50 50 100

Fisher’s exact one-sided P = 0.121

But, scientists get excited:

“The 3 tumors are Biologically Significant”

Statisticians protest:

“But, they aren’t Statistically Significant”
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Include Historical Data

Same species/strain, same Lab, recently

0 tumors in 450 control rodents

Pooled Analysis
C E Total

Tumor 0 3 3
No Tumor 500 47 547

500 50 550

Fisher’s exact one-sided P
.
= .0075

Biological and Statistical significance!
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Bringing In History

Control rates are drawn from a Beta(µ,M)

Use all of the data to estimate µ and M

Give the historical data weight equivalent to a sample size of
M̂ with rate µ̂

Female, Fisher F344 Male Rats, 70 historical experiments
(Tarone 1982)

Tumor N M̂ µ̂
bM
N

Lung 1805 513 .022 28.4%
Stromal Polyp 1725 16 .147 0.9%

Adaptive down-weighting of history
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Design and Analysis for Cluster Randomized Studies

Setting

Compare two weight loss interventions

Randomize clinics in pairs, one to A and one to B

Compute clinic-pair-specific comparisons combine over pairs

How to design and how to analyze,
especially with a small number of clinics?
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The equal sample size, unpaired case

There are K clusters

Within-cluster sample sizes are nk ≡ n

The V(treatment comparison), when computed under the
assumption of independence is Vind

Adjust this by the among-clinic variance component

Vicc = Vind × [1 + ρ (n − 1)] = Vind × [design effect]

ρ = τ2/σ2 + τ2 (the ICC)

τ2 =

(
ρ

1 − ρ

)
σ2 (the among-clinic variance)

σ2 = single-observation variance
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Design and Analysis Considerations

In the paired-clinic case, to compute

Vicc = V (treatment comparison),

need to account for the following variances:

Individual measurement (σ2)

The trial will provide sufficient information

Among-clusters: within (τ2
w ) and between (τ2

b ) cluster pairs
with (τ2 = τ2

w + τ2
b )
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The need for an informative prior

With a small number of clusters, the trial will provide little
information on τ2 and even less information on γ = τ2

b/(τ2
w +

τ2
b )

Without informative priors, an “honest” computation of
posterior uncertainty (one that integrates over uncertainty in
τ2 and γ) will be so large as to be useless

Therefore, either don’t do the study or use informative priors
to “bring in” outside information

Fortunately, other weight loss studies provide credible and
informative prior information on τ2, but not so for γ

For γ, we need to rely primarily on expert opinion and
sensitivity analysis
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A Bayesian Model

Use an informative, data-based prior for τ2 and a small-mean,
small-variance prior for γ

τ2 ∼ IG: = τ2
50 with τ2

95 = 2 × τ2
50

[γ | ǫ,M] ∼ Beta(ǫ,M)

E (γ) = ǫ,V (γ) = ǫ(1 − ǫ)/M

Take the “best estimates” of (σ2, ρ) from other
cluster-randomized studies of weight change and obtain
σ2 ≈ (0.34)2, likely ρ̂: (0.006, 0.010, 0.050)

⇒ 104 × τ2 = (7.0, 11.7, 60.8),
104τ 2

50 = 11.7, 104τ 2
95 = 23.4

Use ǫ ≈ 0.10 and a relatively large M = 15

The 90th percentile is approximately 0.20
Conservative in that there is little gain from pairing
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Addressing non-standard and otherwise challenging goals
Bayesians have a corner on the market

Ranks and Histograms

Complicated, non-linear models

Complicated goals like adaptive design

Regions

Bioequivalence & non-Inferiority
Inherently bivariate treatment comparisons
Adaptive design based on relations among parameters
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Bioequivalence & Non-inferiority

∆ is the treatment difference

(−∆∗,∆
∗) is the interval of equivalence

(determined by clinical/biologic/policy considerations)

Bio-equivalence: −∆∗ ≤ ∆ ≤ ∆∗

Non-inferiority: −∆∗ ≤ ∆ (negative ∆ is inferior)

Compute relevant posterior probabilities and design so that
these will be sufficiently extreme under parameter scenarios of
interest

Can use this formalism to produce desired frequentist
properties
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Inherently bivariate treatment comparisons

Compare two treatments based on a bivariate outcome

Viral load and CD4

Efficacy and SAE incidence

Construct R2 regions of equivalence and advantage

Inherently R2 regions can capture clinically important
trade-offs

But, only generalized rectangles result from combining
single-endpoint, univariate regions

The Bayesian formalism is needed to compute,

pr (region | data)
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Combining endpoint-specific, univariate regions
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Inherently R2 Regions
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Adaptive design based on relations among parameters

Single parameter assessments
1 if pr(θ > θsafety > 0 | data) > 0.20, stop
2 if pr(θ < θefficacy < 0 | data) > 0.98, stop
3 if pr(either 1 or 2 by end of study | data) > 0.90, continue as

is, otherwise, either stop for futility or increase accrual/clinics
Requires simulating futures, conditional on current information

This requires assumptions on accrual, dropouts,

cross-overs, . . .

Parameter relations

if pr(Rel(θ1, θ2) > 0 | data) > 0.98, stop

Don’t insist on strict frequentist goals
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Continue or stop a dose

Start with doses (d1, . . . , dm)

P(d ,θ) = pr(favorable response | d ,θ)

If P(d , θ | data) ≥ 0.75, continue accruing to the dose
If P(d , θ | data) < 0.75, stop accruing to the dose

More generally, when allocating to doses, trade-off gaining
information on θ and doing the best for the next patient
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Allocation on Outcome

Controversial in clinical trials, but can be effective

Less controversial: Adaptive randomization stratification

Best approaches use Bayesian structuring for either Bayes or
Frequentist goals
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≈ Louis 1975 Biometrika

Gaussian Responses, treatments TA and TB

SPRT Stopping based on the likelihood-ratio (Lmn)
after m responses TA and n on TB

Continue if 0 < A < Lmn < B < ∞
No maximum accrual

For non-anticipating, adaptive allocation rules, frequentist
type I and II errors are controlled
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Approximately the Louis (1975) rule

πmn = pr(TB > TA | data) = Lmn/(1 + Lmn) for a 50/50 prior

Can use π00 6= 0.5, but equipoise requires close to 0.5

Select an imbalance parameter: 0.5 ≤ φ < 1.0

Allocate to keep

m/(m + n) ≈ φπmn + (1 − φ)(1 − πmn)
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Simulation Results, Treatment A is better

100φ → 50 55 70

Mφ 78.2 87.6 127.5
Nφ 77.7 71.7 57.2

Mφ + Nφ 155.9 159.3 184.7
Cost 0 3.4 28.8

Benefit 0 6.0 20.5

Mφ and Nφ are expected sample sizes

Cost = (Mφ + Nφ) − (M0.5 + N0.5)

Benefit = N0.5 − Nφ
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Bayes & Multiplicity

The prior to posterior mapping doesn’t “know” about multiple
comparisons

With additive, component-specific losses each comparison is
optimized separately with no accounting for the number of
comparisons

However, use of a hyper-prior (or EB) links the components
since the posterior “borrows information”

Inducing shrinkage as a multiplicity control

If collective penalties are needed, use a multiplicity-explicit
loss function
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The k-ratio, Z test

RE ANOVA

• θ1, . . . , θK iid N(µ, τ2)

• [Yik | θk ] ind N(θk , σ2)

• [θk | Y.k ] ∼ N

(
µ + (1 − B)(Y.k − µ), (1 − B)

σ2

n

)

F = 1/B̂

Compare columns 1 and 2:

Z
Bayes
12 = Z

freq
12

{
(F−1)+

F

} 1
2

=
“√

n(Y
.1−Y

.2)

σ̂

√

2

” n

(F−1)+

F

o 1
2
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Comments

The magnitude of F adjusts the test statistic

For large K, under the global null hypothesis (τ2 = 0),
pr[all Zij = 0] ≥ 0.5

The FW rejection rate is much smaller than 0.5

“Scoping” is important because the number of candidate
comparisons influences the value of µ̂ and B̂ and performance
more generally

Non-additive loss functions can be used

e.g., 1 + 1 = 2.5

These link inferences among components in addition to that
induced by shrinkage
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Bayes and Subgroups: HDFP

Randomized between Referred Care (RC)
and Stepped Care (SC)

Outcome: 5-year death rate, overall and in 12 strata

Y = 1000 log[OR(SC:RC)]

Strata

Initial diastolic blood pressure
I = 90-104
II = 105-114
III = ≥ 115

Race (B/W)
Gender (F/M)
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HDFP Results

Group Y θ̂ 1 − B σ̂ PSD

I BM –129 –157 54 170 125
BF –304 –240 44 206 137

WM –242 –220 59 153 117
WF –355 –253 39 231 144

II BM –274 –213 29 290 155
BF –529 –266 23 337 161

WM –41 –156 22 349 162
WF 809 –61 13 479 171

III BM –558 –273 23 337 161
BF –235 –197 18 389 166

WM 336 –122 13 483 171
WF 1251 –103 6 730 178

All posterior means are negative
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HDFP Subgroup Analysis: Ensemble Estimates

(1 − B)
1
2 on data rather than (1 − B)

•

Top:PMs Middle:MLEs Bottom:Ensemble
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Bayesian Monitoring

CPCRA-TOXO: Prevention of Toxoplasmosis

Eligibility

Either an AIDS defining illness
or CD4 < 200
A positive titre for toxoplasma gondii

Originally designed with four treatment groups

Active & placebo clindamycin, 2:1
Active & placebo pyrimethamine, 2:1

The clindamycin arm was stopped after a few months

We look at PYRI vs Placebo
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Analysis of the Toxo Trial

WE

Used the Cox model

Adjusted for baseline CD4

Elicited priors from three HIV/AIDS clinicians, one PWA
conducting AIDS research and one AIDS epidemiologist

Monitored the trial after-the-fact

The DSMB monitored it during-the-fact

“Stopped” when the posterior probability of benefit or the
posterior probability of harm got sufficiently high

Used a variety of prior distributions, including an
equally-weighted mixture of the five elicited priors
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The Cox Model

Partial likelihood:

L(θ1, θ2) =

d∏

j=1

(
eθ1z1j+θ2z2j

∑
ν∈Rj

eθ1z1ν+θ2z2ν

)

d is the number of individuals experiencing the endpoint
(death or TE)

Rj is the j th risk set

The collection of individuals alive and in the study immediately
preceding the j th endpoint

Covariates

Treatment group status: z1j = 1 or 0 a.a. person j received
pyrimethamine or placebo
CD4 cell count at study entry: (z2j)

Negative values of θ1 indicate a benefit for pyrimethamine
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Prior Distributions

We put a flat prior on the CD4 effect (θ2)

We elicited priors for the Pryimethamine effect (θ1)
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Elicitation

Ask about potential observables

P = pr[event in two years]

P0 = best guess for the placebo

mode, median, mean

Then, distribution of Ppyri | P0

percentiles
draw a picture

Convert to Cox model parameter:

θ1 = log(1 − P0) − log(1 − Ppyri )
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Elicited Priors
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Actual TOXO Monitoring

Monitored for file closing dates:
01/15/91, 07/31/91, and 12/31/91

At its final meeting the board recommended stopping

The pyrimethamine group had not shown significantly fewer
TE events and the low overall TE rate made a statistically
significant difference unlikely to emerge.

Also, an increase in the number of deaths in the
pyrimethamine group was noted
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Posteriors for a flat prior
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Various Posterior Distributions
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Posterior Probabilities of regions
(Bayes can take longer to stop!)
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After the Fact Monitoring

The elicited priors bear almost no resemblance to the eventual
data

Our experts believed

That TE is common in this patient population
That pyrimethamine has a substantial prophylactic effect

Yet, eventually the data overwhelmed the elicited priors

Would it have been ethical to wait
so that these experts were convinced?
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Summary

There have been many Bayesian successes, but much remains
to be done

Methodologically
Sociologically

CDRH, its encouragement and guidance have accelerated
adoption and innovation

Guidance for the Use of Bayesian Statistics

in Medical Device Clinical Trials

The CDRH stem cell is seeding metastases to other FDA
Centers
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Recommendations

1 Encourage Bayesian design for frequentist analysis

To promote formal assembly of prior information
To produce realistic designs in the context of important
uncertainties

2 Encourage use of the Bayesian formalism to develop all
monitoring plans

◦ Sample size adjustment, accrual termination, follow-up
termination (for efficacy or curtailment)

Priors and losses as tuning parameters for frequentist goals
Bayesian goals

3 Evaluate and introduce fully Bayesian designs and analyses
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Closing

Potential Bayesian benefits are substantial, but validity and
effectiveness require expertise and care

Bayes isn’t always worth the bother, but acceptance and
benefits burgeon

The philosophy and formalism are by no means panaceas

There are no free lunches in statistics

Happily, there are a broad array of reduced-price meals

Many based on Bayesian recipes!
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