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I To treat the patients within trial as effectively as possible

I Modify the optimal design by incorporating randomisation and adding a

constraint which forces a minimum number of patients on each treatment.
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Problem setting

I Consider a two-armed clinical trial with a binary endpoint and a fintie

number of patients, n.

I NA,NB are random, n = NA + NB

I Independent Bernoulli random variables, X, Y (denotes the patient’s

response either success or failure)

X ∼ Bernoulli(θA),Y ∼ Bernoulli(θB), for 0 ≤ θA, θB ≤ 1
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RPW rule

I Well-known response-adaptive designs, randomised play-the-winner(RPW)

rule.

I Initially, draw balls from an urn contains u balls of type A and B,

respectively

I Allocate patient in the drawn treatments.

I A success on treatment A, or a failure on treatment B, add β type A and

α type B balls in the urn (0 ≤ α ≤ β, are integers)

I B success on treatment A, or a failure on treatment A, add β type B and

α type A balls in the urn
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Optimal design using dynamic programming(DP)

I The RPW is not contructed based on any formal optimality criterion.

→ Alternative approach which utilises dynamic programming

I Optimal design using dynamic programming(DP)
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Optimal design using dynamic programming(DP)

I θA ∼ Beta (sA,0, fA,0) and θB ∼ Beta (SB,0, fB,0) for 0 ≤ θA, θB ≤ 1

I For successes or failures on the treatments(sA,t , fA,t , sB,t , fB,t),

θA|sA,t , fA,t ∼ Beta (sA,0 + sA,t , fA,0 + fA,t) and

θB |sB,t , fB,t ∼ Beta (sB,0 + sB,t , fB,0 + fB,t), where

sA,t + fA,t + sB,t + fB,t = 1

I s̃j,t = sj,0 + sj,t , f̃j,t = fj,0 + fj,t , where j = A,B

I s̃j,t
s̃j,t+fj,t

is the posterior probability.

I Let δj,t , for t = 0, . . . , n − 1, j = A.B

δj,t =

 1, if patient t + 1 is allocated to treatment j

0, otherwise.
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Optimal design using dynamic programming(DP)

I s̃j,t
s̃j,t+fj,t

· δj,t is the expected (one-period) reward.

I Let Π be the family of admissible designs π, which satisfie
∑

j δj,t = 1 for

all t

I Maximum expected total reward, i.e. maximum Bayes-expected number of

successes, in the rest of the trial after t patients.

I Ft (sA, fA, sB , fB) :=

maxπ∈Π Eπ
[∑n−1

u=t

∑
j∈{A,B}

s̃j,u

s̃j,u+f̃j,u
· δj,u|s̃A,t = sA, f̃A,t = fA, s̃B,t = sB , f̃B,t = fB

]
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Optimal design using dynamic programming(DP)

I If treatment A is allocated to the t+1 patient,

FA
t (sA, fA, sB , fB) =

sA
sA + fA

· [1 + Ft+1 (sA + 1, fA, sB , fB)]

+
fA

sA + fA
· Ft+1 (sA, fA + 1, sB , fB)

I FB
t (sA, fA, sB , fB) can be expressed in the same way

I The value function satisifes the following recurrence known as the principle

of optimality

Ft (sA, fA, sB , fB) =

max{FA
t (sA, fA, sB , fB) ,FB

t (sA, fA, sB , fB)} 0 ≤ t ≤ n − 1.

0 t=n
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Optimal design using randomised dynamic programming (RDP)

I Natural step is to modify the optimal design by forcing actions to be

randomised

I Action a=1, Allocated treatment A w.p. p and treatment B w.p. 1-p

I Action a=2, Allocated treatment A w.p. 1-p and treatment B w.p. p

I When a=1,

F1
t (sA, fA, sB , fB) = p · FA

t (sA, fA, sB , fB) + (1− p) · FB
t (sA, fA, sB , fB)

I When a=2,

F2
t (sA, fA, sB , fB) = (1− p) · FA

t (sA, fA, sB , fB) + p · FB
t (sA, fA, sB , fB)
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I The value function satisfies

Ft (sA, fA, sB , fB) =

max{F1
t (sA, fA, sB , fB) ,F2

t (sA, fA, sB , fB)} 0 ≤ t ≤ n − 1.

0 t=n
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Optimal design using constrained randomised dynamic programming

(CRDP)

I In the paper, they modify the optimal design futher by adding a constraint

to ensure that each treatment has at least l observations.

I Let zt = (s̃A,t , f̃B,t , s̃B,t , f̃B,t , ñ), ñ = n − t

I The action set, A = {1, 2}

I

Ra(s̃A,t , f̃B,t , s̃B,t , f̃B,t , ñ ≥ 1) =


p · s̃A,t

s̃A,t+f̃A,t
+ (1− p) · s̃B,t

s̃B,t+f̃B,t
, if a=1

(1− p) · s̃A,t

s̃A,t+f̃A,t
+ p · s̃B,t

s̃B,t+f̃B,t
, if a=2

Otherwise,

Ra(s̃A,t , f̃B,t , s̃B,t , f̃B,t , ñ = 0) =

−n, if sA,t + fA,t < l , or sB,t + fB,t < l ,

0, otherwise,
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I a When a=1:

zt+1 =



(s̃A,t + 1, f̃A,t , s̃B,t , f̃B,t , ñ − 1) w.p. p · s̃A,t

s̃A,t+f̃A,t

(s̃A,t , f̃A,t + 1, s̃B,t , f̃B,t , ñ − 1) w.p. p · f̃A,t

s̃A,t+f̃A,t

(s̃A,t , f̃A,t , s̃B,t + 1, f̃B,t , ñ − 1) w.p. (1− p) · s̃B,t

s̃B,t+f̃B,t

(s̃A,t , f̃A,t , s̃B,t , f̃B,t + 1, ñ − 1) w.p. (1− p) · s̃B,t

s̃B,t+f̃B,t
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I a When a=2:

zt+1 =



(s̃A,t + 1, f̃A,t , s̃B,t , f̃B,t , ñ − 1) w.p. (1− p) · s̃A,t

s̃A,t+f̃A,t

(s̃A,t , f̃A,t + 1, s̃B,t , f̃B,t , ñ − 1) w.p. (1− p) · f̃A,t

s̃A,t+f̃A,t

(s̃A,t , f̃A,t , s̃B,t + 1, f̃B,t , ñ − 1) w.p. p · s̃B,t

s̃B,t+f̃B,t

(s̃A,t , f̃A,t , s̃B,t , f̃B,t + 1, ñ − 1) w.p. p · s̃B,t

s̃B,t+f̃B,t
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Simulation studies

I H0 : θA = θB vs H0 : θA 6= θB

I n = 75, (n=25, n=50, n=100)

I θA = 0.2 (0.5, 0.8), θB ∈ {0.1, . . . , 0.9}

I 10,000 replications.

I Measure:

Power/Type I error rate/Percentage of patients allocated to the superior

treatment arm/ Average bias of the estimator / MSE of the estimator
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Power/Type I error rate

Figure: θA = 0.5
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Percentage of patients allocated to the superior treatment arm
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Average bias of the estimator
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MSE of the estimator
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A Bayesian sequential design with adaptive randomization for 2-sided

hypothesis test

I We consider a 2-sided test where the variances are unknown.

I Patients are allocated to the 2 arms with a randomization rate to achieve

minimum variance for test statistics

I A Bayesian sequential design with adaptive randomization is not common

20/31



Settings

I
−→
X T : nT observations from the treatment(novel treatment) group.
−→
X C : nC observations from the control(established treatment) group.

I Assume XTi ∼ N
(
µT , σ

2
T

)
for i = 1, . . . , nT ,

XCi
iid∼ N

(
µC , σ

2
C

)
, for i = 1, . . . , nC

I Purpose : Recruit patients for both group to test whether the mean

efficacies of the novel and established treatments are equal (µT = µC )
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Settings

I µC |σ2
C ∼ N(µ0, σ

2
C/τ),

µ0 : from the prior information. τ : controling the similarity between µ0, µC

I σ2
C ∼ inv− χ2(ν0, σ

2
0)

ν0, σ
2
0 : from prior information,

σ2
0 : an estimation of σ2

C , ν0 : control extend of dependency on the prior

I ’non-informative prior’ for µT , σ
2
T , p

(
µT , σ

2
T

)
∝
(
σ2
T

)−1

I At the jth interim analysis,

n(tj) = nT (tj) + nC (tj) : the number of patients recruited
−→x Tj ,

−→x Cj : nT (tj), and nC (tj) number of observations

I Information fraction at the jth interim analysis, t∗j = n(tj)/n, where n is

the maximum allowed sample size.
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I Conditional on the interim data at tj ,

p
(
µT , σ

2
T |−→x Tj

)
∼(

σ2
T

)−1 × exp
[
− 1

2σ2
T

{
(nT (tj)− 1) s2

Tj + nT (tj) (xTj − µT )2}], where
xTj =

(
nTj (tj)

)−1∑nTj
(t)

i=1 xTi and

s2
Tj

=
(
nTj (tj)− 1

)−1∑nTj
(t)

i=1 (xTi − xTj)
2

I Conditional on the interim data at tj ,

p
(
µC , σ

2
C |−→x Cj , τ, µ0, v0, σ

2
0
)
∼ N − In v − χ2 (µnj , σ

2
nj/τnj ; vnj , σ

2
nj

)
,where

µnj = τ

τ+nC (tj)
µ0 +

nC (tj)
τ+nC (tj)

xCj , τnj = τ + nC (tj) , vnj = v0 + nC (tj)

vnjσ
2
nj = v0σ

2
0 + (nC (tj)− 1) s2

Cj +
τnC (tj)
τ+nC (tj)

(xCj − µ0)2 , xCj =

1
nC (tj)

∑nC (tj)
i=1 xCi
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Posterior distribution

I The marginal posterior distributions for σt and σC

p
(
σ2
T |−→x Tj

)
∼ Inv−χ2 (nT (tj)− 1, s2

Tj

)
p
(
σ2
C |−→x Cj , τ, µ0, v0, σ

2
0
)
∼ Inv−χ2 (νnj , σ2

nj

)
I The conditional posterior distributions for µT and µC

p
(
µT |σ2

T ,
−→x TJ

)
∼ N

(
xTj , σ

2
T/nT (tj)

)
p
(
µC |σ2

C ,
−→x Cj , τ, µ0, v0, σ

2
0
)
∼ N

(
µnj , σ

2
C/τnj

)
I The conditional posterior distribution of µT − µC

p
(
µT − µC |σ2

T ,
−→x Tj , σ

2
C ,
−→x Cj , τ, µ0, v0, σ

2
0
)
∼ N

(
xTj − µnj , σ

2
T/nT (tj) + |σ2

C/τnj
)

I The conditional posterior probability of |µT − µC | > δ

pr
(
|µT − µC | > δ|σ2

T ,
−→x Tj , σ

2
C ,
−→x Cj , τ, µ0, v0, σ

2
0
)

= 1−Φu,σ(δ)+Φu,σ(−δ)

where Φu,σ(x) is cdf of normal distribution with mean u = xTj − µnj and

variance σ2 = σ2
T/nT (tj) + σ2

C/τnj
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The randomization method

I randomization rate can be changed adaptively after each interim analysis,

to achieve greater testing power at fixed total sample size.

I newly nrecruited n (tj+1)− n (tj) patients to be assigned to the treatment

group is

rT (tj) = min

{
max

(
σ̂TjnC (tj) + σ̂Tjτ + σ̂Tj (n (tj+1)− σ̂CjnT (tj)

(σ̂Tj + σ̂Cj) (n (tj+1)− n (tj))
, 0
)
, 1
}

, where σ̂Tj and σ̂Cj are the estimates of σT and σC from the jth interim

analysis

I Assigning patients to the treatment group at this randomization rate can

achieve the minimum variance estimation for the test statistic,

µ̂T − µ̂C = xTj − µnj
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Bayesian sequential design with adaptive randomization(BSDAR)

I To control the study-wide overall type I error, alpha spending functions are

used.

I It is function of information fraction, f
(
t∗j
)
and t∗j is the information

fraction at the jth interim analysis, then f (1) = α

I 4 types of alpha spending functions:

1. O’Brien-Fleming alpha spending function
(
α1 (t∗) = 2− 2Φ

(
zα/2/

√
t∗
))
,

where Φ is cdf of standard normal.

2. Pocock alpha spending function (α2 (t∗) = α log {1 + (e − 1)t∗})
3. Uniform alpha spending function (α3 (t∗) = t∗α)

4. Equal alpha spending function, the traditional method that sets equal

critical values for all t∗.
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Bayesian sequential design with adaptive randomization(BSDAR)

1. Update the marginal posterior probability distributions of σT and

σC , p
(
σ2
T |−→x Tj

)
and p

(
σ2
C |−→x Cj , τ, µ0, ν0, σ

2
0
)

2. Update the conditional posterior probability distributions of µT and µC ,

p
(
µT |σ2

T ,
−→x Tj

)
and p

(
µC |σ2

C ,
−→x Cj , τ, µ0, v0, σ

2
0
)

3. Calculate the posterior probability of rejecting the null hypothesis,

p
(
|µT − µC | > δ|σ2

T ,
−→x Tj , σ

2
C ,
−→x Cj , τ, µ0, v0, σ

2
0
)

4. Stopping for efficacy:

p
(
|µT − µC | > δ|σ2

T ,
−→x Tj , σ

2
C ,
−→x Cj , τ, µ0, v0, σ

2
0
)
≥ pu

(
t∗j
)
, The choice of

pu
(
t∗j
)
, depending on tj and the choice of α

5. If the stopping decision is not made and the maximum sample size not

reached, continue the trial and assign the newly recruited patients to the

treatment group at the randomization rate rT (tj)
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Algorithm1 for rT (tj)

I For given rate rT (t0))(usually 0.5), α(t∗)

I Assume µT = µC = c

I Preset the planned total number of patients to be recruited at the jth

interim analysis as n(tj).

I nT (t1) = n(t1)rT (t0) and nC (t1) = n(t1)(1− rT (t0))
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Algorithm1 for rT (tj)

1. For m = 1, . . . ,Nrep:

1.1 Generate −→x m
T =

(
xmT1, . . . , x

m
TnT

)T
from N

(
c, σ2∗

T

)
1.2 Generate −→x m

C =
(
xmC1, . . . , x

m
Cnc

)T
from N

(
c, σ2∗

C

)
1.3 For j = 1, . . . , J − 1,

1.3.1 Calulate the estimates of σ2
T and σ2

C based on their interim posterior

distributions, denoting the estimates as σ̂2
Tj,m and σ̂2

Cj,m

1.3.2 Calculate Pm(t∗j ) = pr (|µT − µC | > δ|−→x m
Tj ,
−→x m

Cj , µ0, τ, σ̂
2
Tj,m, σ̂

2
Cj,m, v0, σ

2
0)

where −→x m
Tj is a vector of the first nT (tj ) elements of −→x m

T and −→x m
Cj the first

nC (tj ) elements of −→x m
C

1.3.3 Calculate the randomization rate rmT (tj ) based on estimates from 1.3.1

1.3.4 Calculate the number of patients assigned to treatment group,

nT (tj+1)m = nT (tj+1)− (n (tj+1)− n (tj )) rmT (tj )

1.4 At j = J, calculate

Pm(t∗j ) = pr
(
|µT − µC | > δ|−→x m

Tj ,
−→x m

Cj , µ0, τ, σ̂2
Tj,m, σ̂

2
Cj,m, v0, σ

2
0

)
1.5 Let

−→
Pm =

(
Pm

(
t∗1
)
, . . . ,Pm

(
t∗J
))
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Algorithm1 for rT (tj)

2. Denote P1 =
(−→

P 1, . . . ,
−→
P Nrep

)T
, a Nrep × J matrix whose (i,j) element is

the Pm
(
t∗j
)
calculated in the ith iteration of Step 1

3. pu (t∗1 ) is set as the (1− α (t∗1 )) th quantile of the first column of matrix

P1

4. For j = 2, . . . J

4.1. Let Pj be a matrix composed of the rows of Pj−1, where the (j − 1)th

element of the row is smaller than or equal to pu
(
t∗j−1

)
4.2. pu(t∗j ) is set as the (1−∆α(t∗j )) th quantile of the jth column of matrix Pj

where ∆α(t∗j ) = α(t∗j )− α(t∗j−1)
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Algorithm2 for power

I For given rate rT (t0))(usually 0.5), α(t∗)

I muC = c, µT = d + c

I Preset the planned total number of patients to be recruited at the jth

interim analysis as n(tj).

I nT (t1) = n(t1)rT (t0) and nC (t1) = n(t1)(1− rT (t0))
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Algorithm2 for power

1. For m = 1, . . . ,Nrep :

1.1 Generate −→x m
T =

(
xmT1, . . . , x

m
TnT

)T
from N

(
µC , σ

2∗
T

)
1.2 Generate −→x m

C =
(
xmC1, . . . , x

m
CnC

)T
from N

(
µT , σ

2∗
C

)
1.3 For j = 1, . . . , J − 1

1.3.1 Calulate the estimates of σ2
T and σ2

C based on their marginal interim posterior

distributions

1.3.2 Calculate Pm(t∗j ) = pr (|µT − µC | > δ|−→x m
Tj ,
−→x m

Cj , µ0, τ, σ̂
2
Tj,m, σ̂

2
Cj,m, v0, σ

2
0)

based on the first nT (tj ) elements of −→x m
T and nC (tj ) elements of −→x m

C

1.3.3 Calculate the randomization rate rmT (tj )

1.3.4 Calculate the number of patients assigned to treatment group,

nT (tj+1)m = nT (tj+1)− (n (tj+1)− n (tj )) rmT (tj )

1.4 At j=J, calculate

Pm
(
t∗j

)
= pr

(
|µT − µC | > δ|−→x m

Tj ,
−→x m

Cj , µ0, τ, σ̂2
Tj,m, σ̂

2
Cj,m, σ̂

2
Cj,m, v0, σ

2
0

)
1.5 Let

−→
Pm =

(
Pm

(
t∗1
)
, . . . ,Pm

(
t∗J
))
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Algorithm2 for power

2 Let P1 =
(−→

P 1, . . . ,
−→
P Nrep

)T
, a Nrep × J matrix

3 Let Pj be a matrix composed of the rows of Pj−1 where the (j − 1)th

element of the row is smaller than or equal to pu
(
t∗j−1

)
, for

j = 2, . . . , J + 1

4 β = (the number of rows of matrixPJ+1) /Nrep

5 Power = 1− β
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