A Bayesian adaptive design for clinical trials in rare diseases Qingzhao Yu, et al.

Presented by 이종진

Seoul National University
ga0408@snu.ac.kr

may 28, 2019

- To treat the patients within trial as effectively as possible
- Modify the optimal design by incorporating randomisation and adding a constraint which forces a minimum number of patients on each treatment.

Problem setting

- Consider a two-armed clinical trial with a binary endpoint and a fintie number of patients, n.
- N_{A}, N_{B} are random, $n=N_{A}+N_{B}$
- Independent Bernoulli random variables, X, Y (denotes the patient's response either success or failure)

$$
X \sim \text { Bernoulli }\left(\theta_{A}\right), Y \sim \operatorname{Bernoulli}\left(\theta_{B}\right), \text { for } 0 \leq \theta_{A}, \theta_{B} \leq 1
$$

- Well-known response-adaptive designs, randomised play-the-winner(RPW) rule.
- Initially, draw balls from an urn contains u balls of type A and B, respectively
- Allocate patient in the drawn treatments.
- \mathbf{A} success on treatment A , or a failure on treatment B , add β type A and α type B balls in the urn $(0 \leq \alpha \leq \beta$, are integers)
- \mathbf{B} success on treatment A, or a failure on treatment A, add β type B and α type A balls in the urn

Optimal design using dynamic programming(DP)

- The RPW is not contructed based on any formal optimality criterion.
\rightarrow Alternative approach which utilises dynamic programming
- Optimal design using dynamic programming(DP)

Optimal design using dynamic programming(DP)

- $\theta_{A} \sim \operatorname{Beta}\left(s_{A, 0}, f_{A, 0}\right)$ and $\theta_{B} \sim \operatorname{Beta}\left(S_{B, 0}, f_{B, 0}\right) \quad$ for $0 \leq \theta_{A}, \theta_{B} \leq 1$
- For successes or failures on the treatments $\left(s_{A, t}, f_{A, t}, s_{B, t}, f_{B, t}\right)$,
$\theta_{A} \mid s_{A, t}, f_{A, t} \sim \operatorname{Beta}\left(s_{A, 0}+s_{A, t}, f_{A, 0}+f_{A, t}\right)$ and
$\theta_{B} \mid s_{B, t}, f_{B, t} \sim \operatorname{Beta}\left(s_{B, 0}+s_{B, t}, f_{B, 0}+f_{B, t}\right)$, where
$s_{A, t}+f_{A, t}+s_{B, t}+f_{B, t}=1$
- $\widetilde{s}_{j, t}=s_{j, 0}+s_{j, t}, \quad \tilde{f}_{j, t}=f_{j, 0}+f_{j, t}$, where $j=A, B$
$-\frac{\widetilde{s}_{j, t}}{\widetilde{s}_{j, t}+f_{j, t}}$ is the posterior probability.
- Let $\delta_{j, t}$, for $t=0, \ldots, n-1, j=A . B$
$\delta_{j, t}= \begin{cases}1, & \text { if patient } t+1 \text { is allocated to treatment } j \\ 0, & \text { otherwise. }\end{cases}$

Optimal design using dynamic programming(DP)

$-\frac{\widetilde{s}_{j, t}}{\widetilde{s}_{j, t}+f_{j, t}} \cdot \delta_{j, t}$ is the expected (one-period) reward.

- Let Π be the family of admissible designs π, which satisfie $\sum_{j} \delta_{j, t}=1$ for all t
- Maximum expected total reward, i.e. maximum Bayes-expected number of successes, in the rest of the trial after t patients.
- $\mathcal{F}_{t}\left(s_{A}, f_{A}, s_{B}, f_{B}\right):=$
$\max _{\pi \in \Pi} \mathbb{E}^{\pi}\left[\left.\sum_{u=t}^{n-1} \sum_{j \in\{A, B\}} \frac{\widetilde{s}_{j, u}}{\widetilde{s}_{j, u}+\tilde{f}_{j, u}} \cdot \delta_{j, u} \right\rvert\, \widetilde{s}_{A, t}=s_{A}, \tilde{f}_{A, t}=f_{A}, \widetilde{s}_{B, t}=s_{B}, \tilde{f}_{B, t}=f_{B}\right]$

Optimal design using dynamic programming(DP)

- If treatment A is allocated to the $\mathrm{t}+1$ patient,

$$
\begin{aligned}
\mathcal{F}_{t}^{A}\left(s_{A}, f_{A}, s_{B}, f_{B}\right) & =\frac{s_{A}}{s_{A}+f_{A}} \cdot\left[1+\mathcal{F}_{t+1}\left(s_{A}+1, f_{A}, s_{B}, f_{B}\right)\right] \\
& +\frac{f_{A}}{s_{A}+f_{A}} \cdot \mathcal{F}_{t+1}\left(s_{A}, f_{A}+1, s_{B}, f_{B}\right)
\end{aligned}
$$

- $\mathcal{F}_{t}^{B}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)$ can be expressed in the same way
- The value function satisifes the following recurrence known as the principle of optimality

$$
\mathcal{F}_{t}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)= \begin{cases}\max \left\{\mathcal{F}_{t}^{A}\left(s_{A}, f_{A}, s_{B}, f_{B}\right), \mathcal{F}_{t}^{B}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)\right\} & 0 \leq t \leq n-1 \\ 0 & \mathrm{t}=\mathrm{n}\end{cases}
$$

Optimal design using randomised dynamic programming (RDP)

- Natural step is to modify the optimal design by forcing actions to be randomised
- Action a=1, Allocated treatment A w.p. p and treatment B w.p. 1-p
- Action a=2, Allocated treatment A w.p. 1-p and treatment B w.p. p
- When $\mathrm{a}=1$,
$\mathcal{F}_{t}^{1}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)=p \cdot \mathcal{F}_{t}^{A}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)+(1-p) \cdot \mathcal{F}_{t}^{B}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)$
- When $a=2$,

$$
\mathcal{F}_{t}^{2}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)=(1-p) \cdot \mathcal{F}_{t}^{A}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)+p \cdot \mathcal{F}_{t}^{B}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)
$$

- The value function satisfies

$$
\mathcal{F}_{t}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)= \begin{cases}\max \left\{\mathcal{F}_{t}^{1}\left(s_{A}, f_{A}, s_{B}, f_{B}\right), \mathcal{F}_{t}^{2}\left(s_{A}, f_{A}, s_{B}, f_{B}\right)\right\} & 0 \leq t \leq n-1 \\ 0 & \mathrm{t}=\mathrm{n}\end{cases}
$$

Optimal design using constrained randomised dynamic programming (CRDP)

- In the paper, they modify the optimal design futher by adding a constraint to ensure that each treatment has at least I observations.
- Let $\mathbf{z}_{t}=\left(\widetilde{s}_{A, t}, \widetilde{f}_{B, t}, \widetilde{s}_{B, t}, \widetilde{f}_{B, t}, \widetilde{n}\right), \tilde{n}=n-t$
- The action set, $\mathcal{A}=\{1,2\}$

$$
\mathcal{R}^{a}\left(\widetilde{s}_{A, t}, \widetilde{f}_{B, t}, \widetilde{s}_{B, t}, \widetilde{f}_{B, t}, \tilde{n} \geq 1\right)= \begin{cases}p \cdot \frac{\widetilde{s}_{A, t}}{\widetilde{s}_{A, t}+\tilde{f}_{A, t}}+(1-p) \cdot \frac{\widetilde{s}_{B, t}}{\widetilde{s}_{B, t}+\tilde{f}_{B, t}}, & \text { if } a=1 \\ (1-p) \cdot \frac{\widetilde{s}_{A, t}}{\widetilde{s}_{A, t}+\tilde{f}_{A, t}}+p \cdot \frac{\widetilde{s}_{B, t}}{\widetilde{s}_{B, t}+\tilde{f}_{B, t}}, & \text { if } a=2\end{cases}
$$

Otherwise,

$$
\mathcal{R}^{a}\left(\widetilde{s}_{A, t}, \widetilde{f}_{B, t}, \widetilde{s}_{B, t}, \widetilde{f}_{B, t}, \tilde{n}=0\right)= \begin{cases}-n, & \text { if } s_{A, t}+f_{A, t}<l, \text { or } s_{B, t}+f_{B, t}<l \\ 0, & \text { otherwise }\end{cases}
$$

- a When $\mathrm{a}=1$:

$$
\mathbf{z}_{t+1}= \begin{cases}\left(\widetilde{s}_{A, t}+1, \widetilde{f}_{A, t}, \widetilde{s}_{B, t}, \widetilde{f}_{B, t}, \widetilde{n}-1\right) & \text { w.p. } p \cdot \frac{\widetilde{s}_{A, t}}{\widetilde{s}_{A, t}+\widetilde{f}_{A, t}} \\ \left(\widetilde{s}_{A, t}, \widetilde{f}_{A, t}+1, \widetilde{s}_{B, t}, \widetilde{f}_{B, t}, \tilde{n}-1\right) & \text { w.p. } p \cdot \frac{\widetilde{f}_{A, t}}{\widetilde{s}_{A, t}+\widetilde{f}_{A, t}} \\ \left(\widetilde{s}_{A, t}, \widetilde{f}_{A, t}, \widetilde{s}_{B, t}+1, \widetilde{f}_{B, t}, \widetilde{n}-1\right) & \text { w.p. }(1-p) \cdot \frac{\widetilde{s}_{B, t}}{\widetilde{s}_{B, t}+\tilde{f}_{B, t}} \\ \left(\widetilde{s}_{A, t}, \widetilde{f}_{A, t}, \widetilde{s}_{B, t}, \widetilde{f}_{B, t}+1, \widetilde{n}-1\right) & \text { w.p. }(1-p) \cdot \frac{\widetilde{s}_{B, t}}{\widetilde{s}_{B, t}+f_{B, t}}\end{cases}
$$

- a When $\mathrm{a}=2$:

$$
\mathbf{z}_{t+1}= \begin{cases}\left(\widetilde{s}_{A, t}+1, \widetilde{f}_{A, t}, \widetilde{s}_{B, t}, \widetilde{f}_{B, t}, \tilde{n}-1\right) & \text { w.p. }(1-p) \cdot \frac{\widetilde{s}_{A, t}}{\widetilde{s}_{A, t}+\widetilde{f}_{A, t}} \\ \left(\widetilde{s}_{A, t}, \widetilde{f}_{A, t}+1, \widetilde{s}_{B, t}, \widetilde{f}_{B, t}, \widetilde{n}-1\right) & \text { w.p. }(1-p) \cdot \frac{\widetilde{f}_{A, t}}{\widetilde{s}_{A, t}+\widetilde{f}_{A, t}} \\ \left(\widetilde{s}_{A, t}, \widetilde{f}_{A, t}, \widetilde{s}_{B, t}+1, \widetilde{f}_{B, t}, \widetilde{n}-1\right) & \text { w.p. p } \cdot \frac{\widetilde{s}_{B, t}}{\widetilde{s}_{B, t}+\widetilde{f}_{B, t}} \\ \left(\widetilde{s}_{A, t}, \widetilde{f}_{A, t}, \widetilde{s}_{B, t}, \widetilde{f}_{B, t}+1, \widetilde{n}-1\right) & \text { w.p. p } \cdot \frac{\widetilde{s}_{B, t}}{\widetilde{s}_{B, t}+\tilde{f}_{B, t}}\end{cases}
$$

Simulation studies

- $H_{0}: \theta_{A}=\theta_{B}$ vs $H_{0}: \theta_{A} \neq \theta_{B}$
- $\mathrm{n}=75,(\mathrm{n}=25, \mathrm{n}=50, \mathrm{n}=100)$
- $\theta_{A}=0.2(0.5,0.8), \theta_{B} \in\{0.1, \ldots, 0.9\}$
- 10,000 replications.
- Measure:

Power/Type I error rate/Percentage of patients allocated to the superior treatment arm/ Average bias of the estimator / MSE of the estimator

Power/Type I error rate

Figure: $\theta_{A}=0.5$

Percentage of patients allocated to the superior treatment arm

Average bias of the estimator

$4 \square>4$ 的 14 三 >4 三

MSE of the estimator

A Bayesian sequential design with adaptive randomization for

2-sided hypothesis test
 S. Faye Williamson, et al.

Presented by 이종진

Seoul National University
ga0408@snu.ac.kr

may 28, 2019

A Bayesian sequential design with adaptive randomization for 2－sided hypothesis test
－We consider a 2－sided test where the variances are unknown．
－Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for test statistics
－A Bayesian sequential design with adaptive randomization is not common

Settings

$-\vec{X}_{T}: n_{T}$ observations from the treatment(novel treatment) group. $\vec{X}_{C}: n_{C}$ observations from the control(established treatment) group.

- Assume $X_{T i} \sim N\left(\mu_{T}, \sigma_{T}^{2}\right)$ for $i=1, \ldots, n_{T}$, $X_{C i} \stackrel{i i d}{\sim} N\left(\mu_{C}, \sigma_{C}^{2}\right)$, for $i=1, \ldots, n_{C}$
- Purpose : Recruit patients for both group to test whether the mean efficacies of the novel and established treatments are equal $\left(\mu_{T}=\mu_{C}\right)$

Settings

$-\mu_{C} \mid \sigma_{C}^{2} \sim N\left(\mu_{0}, \sigma_{C}^{2} / \tau\right)$,
μ_{0} : from the prior information. τ : controling the similarity between μ_{0}, μ_{C}

- $\sigma_{C}^{2} \sim i n v-\chi^{2}\left(\nu_{0}, \sigma_{0}^{2}\right)$
ν_{0}, σ_{0}^{2} : from prior information,
σ_{0}^{2} : an estimation of σ_{C}^{2}, ν_{0} : control extend of dependency on the prior
- 'non-informative prior' for $\mu_{T}, \sigma_{T}^{2}, p\left(\mu_{T}, \sigma_{T}^{2}\right) \propto\left(\sigma_{T}^{2}\right)^{-1}$
- At the jth interim analysis,
$n\left(t_{j}\right)=n_{T}\left(t_{j}\right)+n_{C}\left(t_{j}\right)$: the number of patients recruited
$\overrightarrow{\mathbf{x}}_{T_{j}}, \overrightarrow{\mathbf{x}}_{C_{j}}: n_{T}\left(t_{j}\right)$, and $n_{C}\left(t_{j}\right)$ number of observations
- Information fraction at the jth interim analysis, $t_{j}^{*}=n\left(t_{j}\right) / n$, where n is the maximum allowed sample size.
- Conditional on the interim data at t_{j},

$$
\begin{aligned}
& p\left(\mu_{T}, \sigma_{T}^{2} \mid \vec{x}_{T_{j}}\right) \sim \\
& \left(\sigma_{T}^{2}\right)^{-1} \times \exp \left[-\frac{1}{2 \sigma_{T}^{2}}\left\{\left(n_{T}\left(t_{j}\right)-1\right) s_{T_{j}}^{2}+n_{T}\left(t_{j}\right)\left(\bar{x}_{T_{j}}-\mu_{T}\right)^{2}\right\}\right], \text { where } \\
& \bar{x}_{T_{j}}=\left(n_{T_{j}}\left(t_{j}\right)\right)^{-1} \sum_{i=1}^{n_{T_{j}}(t)} x_{T_{i}} \text { and } \\
& s_{T_{j}}^{2}=\left(n_{T_{j}}\left(t_{j}\right)-1\right)^{-1} \sum_{i=1}^{n_{T_{j}}(t)}\left(x_{T i}-\bar{x}_{T_{j}}\right)^{2}
\end{aligned}
$$

- Conditional on the interim data at t_{j},
$p\left(\mu_{C}, \sigma_{C}^{2} \mid \vec{x}_{C j}, \tau, \mu_{0}, v_{0}, \sigma_{0}^{2}\right) \sim N-\ln v-\chi^{2}\left(\mu_{n j}, \sigma_{n j}^{2} / \tau_{n j} ; v_{n j}, \sigma_{n j}^{2}\right)$, where
$\mu_{n j}=\frac{\tau}{\tau+n_{C}\left(t_{j}\right)} \mu_{0}+\frac{n_{C}\left(t_{j}\right)}{\tau+n_{C}\left(t_{j}\right)} \bar{x}_{C j}, \quad \tau_{n j}=\tau+n_{C}\left(t_{j}\right), \quad v_{n j}=v_{0}+n_{C}\left(t_{j}\right)$
$v_{n j} \sigma_{n j}^{2}=v_{0} \sigma_{0}^{2}+\left(n_{C}\left(t_{j}\right)-1\right) s_{C j}^{2}+\frac{\tau n_{C}\left(t_{j}\right)}{\tau+n_{C}\left(t_{j}\right)}\left(\bar{x}_{C_{j}}-\mu_{0}\right)^{2}, \quad \bar{x}_{C j}=$
$\frac{1}{n_{C}\left(t_{j}\right)} \sum_{i=1}^{n_{C}\left(t_{j}\right)} x_{C i}$

Posterior distribution

- The marginal posterior distributions for σ_{t} and σ_{C}

$$
\begin{aligned}
& p\left(\sigma_{T}^{2} \mid \overrightarrow{\mathbf{x}}_{T_{j}}\right) \sim \operatorname{Inv}-\chi^{2}\left(n_{T}\left(t_{j}\right)-1, s_{T j}^{2}\right) \\
& p\left(\sigma_{C}^{2} \mid \overrightarrow{\mathrm{x}}_{C_{j}}, \tau, \mu_{0}, v_{0}, \sigma_{0}^{2}\right) \sim \operatorname{Inv}-\chi^{2}\left(\nu_{n j}, \sigma_{n j}^{2}\right)
\end{aligned}
$$

- The conditional posterior distributions for μ_{T} and μ_{C}

$$
\begin{aligned}
& p\left(\mu_{T} \mid \sigma_{T}^{2}, \overrightarrow{\mathrm{x}}_{T J}\right) \sim N\left(\bar{x}_{T j}, \sigma_{T}^{2} / n_{T}\left(t_{j}\right)\right) \\
& p\left(\mu_{C} \mid \sigma_{C}^{2}, \overrightarrow{\mathrm{x}}_{C j}, \tau, \mu_{0}, v_{0}, \sigma_{0}^{2}\right) \sim N\left(\mu_{n j}, \sigma_{C}^{2} / \tau_{n j}\right)
\end{aligned}
$$

- The conditional posterior distribution of $\mu_{T}-\mu_{C}$

$$
p\left(\mu_{T}-\mu_{C} \mid \sigma_{T}^{2}, \overrightarrow{\mathrm{x}}_{T_{j}}, \sigma_{C}^{2}, \overrightarrow{\mathrm{x}}_{C j}, \tau, \mu_{0}, v_{0}, \sigma_{0}^{2}\right) \sim N\left(\bar{x}_{T j}-\mu_{n j}, \sigma_{T}^{2} / n_{T}\left(t_{j}\right)+\mid \sigma_{C}^{2} / \tau_{n j}\right)
$$

- The conditional posterior probability of $\left|\mu_{T}-\mu_{C}\right|>\delta$

$$
\operatorname{pr}\left(\left|\mu_{T}-\mu_{C}\right|>\delta \mid \sigma_{T}^{2}, \overrightarrow{\mathrm{x}}_{T j}, \sigma_{C}^{2}, \overrightarrow{\mathrm{x}}_{C j}, \tau, \mu_{0}, v_{0}, \sigma_{0}^{2}\right)=1-\Phi_{u, \sigma}(\delta)+\Phi_{u, \sigma}(-\delta)
$$

where $\Phi_{u, \sigma}(x)$ is cdf of normal distribution with mean $u=\bar{x}_{T j}-\mu_{n j}$ and variance $\sigma^{2}=\sigma_{T}^{2} / n_{T}\left(t_{j}\right)+\sigma_{C}^{2} / \tau_{n j}$

The randomization method

- randomization rate can be changed adaptively after each interim analysis, to achieve greater testing power at fixed total sample size.
- newly nrecruited $n\left(t_{j+1}\right)-n\left(t_{j}\right)$ patients to be assigned to the treatment group is
$r_{T}\left(t_{j}\right)=\min \left\{\max \left(\frac{\hat{\sigma}_{T_{j}} n_{C}\left(t_{j}\right)+\hat{\sigma}_{T j} \tau+\hat{\sigma}_{T_{j}}\left(n\left(t_{j+1}\right)-\hat{\sigma}_{C_{j}} n_{T}\left(t_{j}\right)\right.}{\left(\hat{\sigma}_{T_{j}}+\hat{\sigma}_{C_{j}}\right)\left(n\left(t_{j+1}\right)-n\left(t_{j}\right)\right)}, 0\right), 1\right\}$
, where $\hat{\sigma}_{T_{j}}$ and $\hat{\sigma}_{C_{j}}$ are the estimates of σ_{T} and σ_{C} from the j th interim analysis
- Assigning patients to the treatment group at this randomization rate can achieve the minimum variance estimation for the test statistic, $\hat{\mu}_{T}-\hat{\mu}_{C}=\bar{x}_{T_{j}}-\mu_{n j}$

Bayesian sequential design with adaptive randomization(BSDAR)

- To control the study-wide overall type I error, alpha spending functions are used.
- It is function of information fraction, $f\left(t_{j}^{*}\right)$ and t_{j}^{*} is the information fraction at the jth interim analysis, then $f(1)=\alpha$
- 4 types of alpha spending functions:

1. O'Brien-Fleming alpha spending function $\left(\alpha_{1}\left(t^{*}\right)=2-2 \Phi\left(z_{\alpha / 2} / \sqrt{t^{*}}\right)\right)$, where Φ is cdf of standard normal.
2. Pocock alpha spending function $\left(\alpha_{2}\left(t^{*}\right)=\alpha \log \left\{1+(e-1) t^{*}\right\}\right)$
3. Uniform alpha spending function $\left(\alpha_{3}\left(t^{*}\right)=t^{*} \alpha\right)$
4. Equal alpha spending function, the traditional method that sets equal critical values for all t^{*}.

Bayesian sequential design with adaptive randomization(BSDAR)

1. Update the marginal posterior probability distributions of σ_{T} and $\sigma_{C}, p\left(\sigma_{T}^{2} \mid \overrightarrow{\mathrm{x}}_{T_{j}}\right)$ and $p\left(\sigma_{C}^{2} \mid \overrightarrow{\mathrm{x}}_{C_{j}}, \tau, \mu_{0}, \nu_{0}, \sigma_{0}^{2}\right)$
2. Update the conditional posterior probability distributions of μ_{T} and μ_{C}, $p\left(\mu_{T} \mid \sigma_{T}^{2}, \overrightarrow{\mathrm{x}}_{T_{j}}\right)$ and $p\left(\mu_{C} \mid \sigma_{C}^{2}, \overrightarrow{\mathrm{x}}_{C_{j}}, \tau, \mu_{0}, v_{0}, \sigma_{0}^{2}\right)$
3. Calculate the posterior probability of rejecting the null hypothesis, $\mathrm{p}\left(\left|\mu_{T}-\mu_{C}\right|>\delta \mid \sigma_{T}^{2}, \overrightarrow{\mathrm{x}}_{T_{j}}, \sigma_{C}^{2}, \overrightarrow{\mathrm{x}}_{C j}, \tau, \mu_{0}, v_{0}, \sigma_{0}^{2}\right)$
4. Stopping for efficacy:
$\mathrm{p}\left(\left|\mu_{T}-\mu_{C}\right|>\delta \mid \sigma_{T}^{2}, \overrightarrow{\mathrm{x}}_{T_{j}}, \sigma_{C}^{2}, \overrightarrow{\mathrm{x}}_{C_{j}}, \tau, \mu_{0}, v_{0}, \sigma_{0}^{2}\right) \geq p_{u}\left(t_{j}^{*}\right)$, The choice of $p_{u}\left(t_{j}^{*}\right)$, depending on t_{j} and the choice of α
5. If the stopping decision is not made and the maximum sample size not reached, continue the trial and assign the newly recruited patients to the treatment group at the randomization rate $r_{T}\left(t_{j}\right)$

Algorithm1 for $r_{T}\left(t_{j}\right)$

- For given rate $\left.r_{T}\left(t_{0}\right)\right)($ usually 0.5$), \alpha\left(t^{*}\right)$
- Assume $\mu_{T}=\mu_{C}=c$
- Preset the planned total number of patients to be recruited at the jth interim analysis as $n\left(t_{j}\right)$.
$-n_{T}\left(t_{1}\right)=n\left(t_{1}\right) r_{T}\left(t_{0}\right)$ and $n_{C}\left(t_{1}\right)=n\left(t_{1}\right)\left(1-r_{T}\left(t_{0}\right)\right)$

Algorithm1 for $r_{T}\left(t_{j}\right)$

1. For $m=1, \ldots, N_{\text {rep }}$:
1.1 Generate $\overrightarrow{\mathrm{x}}_{T}^{m}=\left(x_{T 1}^{m}, \ldots, x_{T_{n_{T}}}^{m}\right)^{\mathrm{T}}$ from $N\left(c, \sigma_{T}^{2 *}\right)$
1.2 Generate $\overrightarrow{\mathbf{x}}_{C}^{m}=\left(x_{C 1}^{m}, \ldots, x_{C n_{c}}^{m}\right)^{\mathrm{T}}$ from $N\left(c, \sigma_{C}^{2 *}\right)$
1.3 For $j=1, \ldots, J-1$,
1.3.1 Calulate the estimates of σ_{T}^{2} and σ_{C}^{2} based on their interim posterior distributions, denoting the estimates as $\hat{\sigma}_{T j, m}^{2}$ and $\hat{\sigma}_{C j, m}^{2}$
1.3.2 Calculate $P^{m}\left(t_{j}^{*}\right)=\operatorname{pr}\left(\left|\mu_{T}-\mu_{C}\right|>\delta \mid \vec{x}_{T_{j}}^{m}, \vec{x}_{C j}^{m}, \mu_{0}, \tau, \hat{\sigma}_{T j, m}^{2}, \hat{\sigma}_{C j, m}^{2}, v_{0}, \sigma_{0}^{2}\right)$ where $\overrightarrow{\mathrm{x}}_{T_{j}}^{m}$ is a vector of the first $n_{T}\left(t_{j}\right)$ elements of $\overrightarrow{\mathrm{x}}_{T}^{m}$ and $\overrightarrow{\mathrm{x}}_{C_{j}}^{m}$ the first $n_{C}\left(t_{j}\right)$ elements of \vec{x}_{C}^{m}
1.3.3 Calculate the randomization rate $r_{T}^{m}\left(t_{j}\right)$ based on estimates from 1.3.1
1.3.4 Calculate the number of patients assigned to treatment group,

$$
n_{T}\left(t_{j+\mathbf{1}}\right)^{m}=n_{T}\left(t_{j+1}\right)-\left(n\left(t_{j+\mathbf{1}}\right)-n\left(t_{j}\right)\right) r_{T}^{m}\left(t_{j}\right)
$$

1.4 At $j=J$, calculate
$P^{m}\left(t_{j}^{*}\right)=\operatorname{pr}\left(\left|\mu_{T}-\mu_{C}\right|>\delta \mid \overrightarrow{\mathbf{x}}_{T_{j}}^{m}, \overrightarrow{\mathbf{x}}_{C_{j}}^{m}, \mu_{0}, \tau, \hat{\sigma}_{T_{j}, m}^{2}, \hat{\sigma}_{C_{j, m}}^{2}, v_{0}, \sigma_{0}^{2}\right)$
1.5 Let $\overrightarrow{\mathbf{P}}^{m}=\left(P^{m}\left(t_{1}^{*}\right), \ldots, P^{m}\left(t_{J}^{*}\right)\right)$

Algorithm1 for $r_{T}\left(t_{j}\right)$

2. Denote $\mathbf{P}_{1}=\left(\overrightarrow{\mathbf{P}}^{1}, \ldots, \overrightarrow{\mathbf{P}}^{N_{\text {rep }}}\right)^{\mathrm{T}}$, a $N_{\text {rep }} \times J$ matrix whose (i, j) element is the $P^{m}\left(t_{j}^{*}\right)$ calculated in the ith iteration of Step 1
3. $p_{u}\left(t_{1}^{*}\right)$ is set as the $\left(1-\alpha\left(t_{1}^{*}\right)\right)$ th quantile of the first column of matrix
P_{1}
4. For $j=2, \ldots J$
4.1. Let P_{j} be a matrix composed of the rows of P_{j-1}, where the $(j-1)$ th element of the row is smaller than or equal to $p_{u}\left(t_{j-1}^{*}\right)$
4.2. $p_{u}\left(t_{j}^{*}\right)$ is set as the $\left(1-\Delta \alpha\left(t_{j}^{*}\right)\right)$ th quantile of the jth column of matrix P_{j} where $\Delta \alpha\left(t_{j}^{*}\right)=\alpha\left(t_{j}^{*}\right)-\alpha\left(t_{j-1}^{*}\right)$

Algorithm2 for power

- For given rate $\left.r_{T}\left(t_{0}\right)\right)($ usually 0.5$), \alpha\left(t^{*}\right)$
- $m u_{C}=c, \mu_{T}=d+c$
- Preset the planned total number of patients to be recruited at the jth interim analysis as $n\left(t_{j}\right)$.
$-n_{T}\left(t_{1}\right)=n\left(t_{1}\right) r_{T}\left(t_{0}\right)$ and $n_{C}\left(t_{1}\right)=n\left(t_{1}\right)\left(1-r_{T}\left(t_{0}\right)\right)$

Algorithm2 for power

1. For $m=1, \ldots, N_{\text {rep }}$:
1.1 Generate $\overrightarrow{\mathrm{x}}{ }_{T}^{m}=\left(x_{T 1}^{m}, \ldots, x_{T_{n_{T}}}^{m}\right)^{\mathrm{T}}$ from $N\left(\mu_{C}, \sigma_{T}^{2 *}\right)$
1.2 Generate $\overrightarrow{\mathrm{x}}_{C}^{m}=\left(x_{C 1}^{m}, \ldots, x_{C_{n_{C}}}^{m}\right)^{\mathrm{T}}$ from $N\left(\mu_{T}, \sigma_{C}^{2 *}\right)$
1.3 For $j=1, \ldots, J-1$
1.3.1 Calulate the estimates of σ_{T}^{2} and σ_{C}^{2} based on their marginal interim posterior distributions
1.3.2 Calculate $P^{m}\left(t_{j}^{*}\right)=\operatorname{pr}\left(\left|\mu_{T}-\mu_{C}\right|>\delta \mid \overrightarrow{\mathrm{x}}_{T_{j}}^{m}, \overrightarrow{\mathrm{x}}_{C j}^{m}, \mu_{\mathbf{0}}, \tau, \hat{\sigma}_{T j, m}^{2}, \hat{\sigma}_{C j, m}^{2}, v_{0}, \sigma_{0}^{2}\right)$ based on the first $n_{T}\left(t_{j}\right)$ elements of $\overrightarrow{\mathrm{x}}_{T}^{m}$ and $n_{C}\left(t_{j}\right)$ elements of $\overrightarrow{\mathrm{x}}_{C}^{m}$
1.3.3 Calculate the randomization rate $r_{T}^{m}\left(t_{j}\right)$
1.3.4 Calculate the number of patients assigned to treatment group,

$$
n_{T}\left(t_{j+\mathbf{1}}\right)^{m}=n_{T}\left(t_{j+1}\right)-\left(n\left(t_{j+\mathbf{1}}\right)-n\left(t_{j}\right)\right) r_{T}^{m}\left(t_{j}\right)
$$

1.4 At $\mathrm{j}=\mathrm{J}$, calculate
$P^{m}\left(t_{j}^{*}\right)=\operatorname{pr}\left(\left|\mu_{T}-\mu_{C}\right|>\delta \mid \overrightarrow{\mathbf{x}}_{T_{j}}^{m}, \overrightarrow{\mathbf{x}}_{C j}^{m}, \mu_{0}, \tau, \hat{\sigma}_{T j, m}^{2}, \hat{\sigma}_{C j, m}^{2}, \hat{\sigma}_{C j, m}^{2}, v_{0}, \sigma_{0}^{2}\right)$
1.5 Let $\overrightarrow{\mathbf{P}}^{m}=\left(P^{m}\left(t_{1}^{*}\right), \ldots, P^{m}\left(t_{J}^{*}\right)\right)$

Algorithm2 for power

2 Let $\mathbf{P}_{1}=\left(\overrightarrow{\mathbf{P}}^{1}, \ldots, \overrightarrow{\mathbf{P}}^{N_{\text {rep }}}\right)^{\mathrm{T}}$, a $N_{\text {rep }} \times J$ matrix
3 Let P_{j} be a matrix composed of the rows of P_{j-1} where the $(j-1)$ th element of the row is smaller than or equal to $p_{u}\left(t_{j-1}^{*}\right)$, for $j=2, \ldots, J+1$
$4 \beta=\left(\right.$ the number of rows of matrix $\left.P_{J+1}\right) / N_{\text {rep }}$
5 Power $=1-\beta$

