A generalized online mirror descent with applications to classification and regression

Francesco Orabona et al. Machine Learning, 2015.
presented by Boyoung Kim

May 31, 2019

Online convex optimization

- \mathbb{X} be any finite-dimensional linear space equipped with inner product $\langle\cdot, \cdot\rangle$. eg) $\mathbb{X}=\mathbb{R}^{d}$ where $\langle\cdot, \cdot\rangle$ is the vector dot product
- At each step $t=1,2, \ldots$ the algorithm chooses $w_{t} \in S \subseteq \mathbb{X}$ and then observes a convex loss function $\ell_{t}: S \rightarrow \mathbb{R}$, the goal is to control the regret

$$
\begin{equation*}
R_{T}(u)=\sum_{t=1}^{T} \ell_{t}\left(w_{t}\right)-\sum_{t=1}^{T} \ell_{t}(u) \tag{1}
\end{equation*}
$$

for all $u \in S$.

- In these settings for a fixed but unknown example $\left(x_{t}, y_{t}\right) \in \mathbb{X} \times \mathbb{R}$ the loss suffered at step t is defined as $\ell_{t}\left(\boldsymbol{w}_{t}\right)=\ell\left(\left\langle\boldsymbol{w}_{t}, \boldsymbol{x}_{t}\right\rangle, y_{t}\right)$.

Further notation and definitions

- We consider functions f that are closed and convex with domain $S \subseteq \mathbb{X}$.
- Its Fenchel conjugate $f^{*}: \mathbb{X} \rightarrow \mathbb{R}$ is defined by

$$
f^{*}(u)=\sup _{v \in S}(\langle v, u\rangle-f(v))
$$

- The domain of f^{*} is always \mathbb{X}.
- $f^{* *}=f$
- $\|u\|$: A generic norm of a vector $u \in \mathbb{X}$.
- dual $\|\cdot\|_{*}$ is the norm defined by $\|\boldsymbol{v}\|_{*}=\sup _{u}\{\langle\boldsymbol{u}, \boldsymbol{v}\rangle:\|\boldsymbol{u}\| \leq 1\}$.
- The Fenchel-Young inequality states that $f(\boldsymbol{u})+f^{*}(\boldsymbol{v}) \geq\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ for all $\boldsymbol{v}, \boldsymbol{u}$
- A vector x is a subgradient of a convex function f at v if $f(u)-f(v) \geq\langle u-v, x\rangle$ for any u in the domain of f.
- $\partial f(v)$: the set of all the subgradients of f at v
- $\nabla f(v)$: the gradient of f at v
- For all $x \in \partial f(v)$ we have that $f(v)+f^{*}(x)=\langle v, x\rangle$

Further notation and definitions

- A function f is β-strongly convex with respect to a norm $\|\cdot\|$ if for any u, v in its domain, and any $x \in \partial f(u)$

$$
f(v) \geq f(u)+\langle x, v-u\rangle+\frac{\beta}{2}\|u-v\|^{2}
$$

- The Fenchel conjugate f^{*} of a β-strongly convex function f is everywhere differentiable and $\frac{1}{\beta}$-strongly smooth. This means that, for all $u, v \in \mathbb{X}$,

$$
f^{*}(v) \leq f^{*}(u)+\left\langle\nabla f^{*}(u), v-u\right\rangle+\frac{1}{2 \beta}\|u-v\|_{*}^{2}
$$

- A further property of strongly convex functions $f: S \rightarrow \mathbb{R}$ is the following:
- For all $u \in \mathbb{X}$,

$$
\begin{equation*}
\nabla f^{*}(u)=\underset{v \in S}{\operatorname{argmax}}(\langle v, u\rangle-f(v)) \tag{2}
\end{equation*}
$$

- This implies

$$
\begin{equation*}
f\left(\nabla f^{*}(\boldsymbol{u})\right)+f^{*}(\boldsymbol{u})=\left\langle\nabla f^{*}(\boldsymbol{u}), \boldsymbol{u}\right\rangle \tag{3}
\end{equation*}
$$

Online mirror descent

- The standard OMD algorithm sets
- $\boldsymbol{w}_{t}=\nabla f^{*}\left(\boldsymbol{\theta}_{t}\right)$ where f is a strongly convex regularizer
- θ_{t} is updated using subgradient descent: $\theta_{t+1}=\theta_{t}-\eta \ell_{t}^{\prime}$ for $\eta>0$ and $\ell_{t}^{\prime} \in \partial \ell_{t}\left(w_{t}\right)$
- We genaralize OMD in two ways:
- We allow f to change over time
- We do not necessarily use the subgradient of the loss to update θ_{t}

```
Algorithm 1 Online Mirror Descent
    Parameters: A sequence of strongly convex functions \(f_{1}, f_{2}, \ldots\) defined on a common convex domain
    \(S \subseteq \mathbb{X}\).
    Initialize: \(\theta_{1}=\mathbf{0} \in \mathbb{X}\)
    for \(t=1,2, \ldots\) do
4: Choose \(\boldsymbol{w}_{t}=\nabla f_{t}^{*}\left(\boldsymbol{\theta}_{t}\right)\)
5: Observe \(z_{t} \in \mathbb{X}\)
6: Update \(\theta_{t+1}=\boldsymbol{\theta}_{t}+z_{t}\)
7: end for
```


Online mirror descent

Lemma 1

Assume $O M D$ is run with functions $f_{1}, f_{2}, \ldots, f_{T}$ defined on a common convex domain $S \subseteq \mathbb{X}$ and such that each f_{t} is β_{t}-strongly convex with respect to the norm $\|\cdot\|_{t}$. Let $\|\cdot\|_{t, *}$ be the dual norm of $\|\cdot\|_{t}$, for $t=1,2, \ldots, T$. Then, for any $u \in S$,

$$
\sum_{t=1}^{T}\left\langle z_{t}, u-w_{t}\right\rangle \leq f_{T}(u)+\sum_{t=1}^{T}\left(\frac{\left\|z_{t}\right\|_{t, *}^{2}}{2 \beta_{t}}+f_{t}^{*}\left(\theta_{t}\right)-f_{t-1}^{*}\left(\theta_{t}\right)\right)
$$

where we set $f_{0}^{*}(0)=0$. Moreover, for all $t \geq 1$, we have

$$
\begin{equation*}
f_{t}^{*}\left(\boldsymbol{\theta}_{t}\right)-f_{t-1}^{*}\left(\boldsymbol{\theta}_{t}\right) \leq f_{t-1}\left(w_{t}\right)-f_{t}\left(\boldsymbol{w}_{t}\right) \tag{4}
\end{equation*}
$$

Online mirror descent

Proof.
Let $\Delta_{t}=f_{t}^{*}\left(\theta_{t+1}\right)-f_{t-1}^{*}\left(\theta_{t}\right)$. Then $\sum_{t=1}^{T} \Delta_{t}=f_{T}^{*}\left(\theta_{T+1}\right)-f_{0}^{*}\left(\theta_{1}\right)=f_{T}^{*}\left(\theta_{T+1}\right)$. Since f_{t}^{*} are $\frac{1}{\beta_{t}}$-strongly smooth with respect to $\|\cdot\|_{t, *}$, and $\theta_{t+1}=\theta_{t}+z_{t}$,

$$
\begin{aligned}
\Delta_{t} & =f_{t}^{*}\left(\boldsymbol{\theta}_{t+1}\right)-f_{t}^{*}\left(\boldsymbol{\theta}_{t}\right)+f_{t}^{*}\left(\boldsymbol{\theta}_{t}\right)-f_{t-1}^{*}\left(\boldsymbol{\theta}_{t}\right) \\
& \leq f_{t}^{*}\left(\boldsymbol{\theta}_{t}\right)-f_{t-1}^{*}\left(\boldsymbol{\theta}_{t}\right)+\left\langle\nabla f_{t}^{*}\left(\boldsymbol{\theta}_{t}\right), z_{t}\right\rangle+\frac{1}{2 \beta_{t}}\left\|z_{t}\right\|_{t, *}^{2} \\
& =f_{t}^{*}\left(\boldsymbol{\theta}_{t}\right)-f_{t-1}^{*}\left(\boldsymbol{\theta}_{t}\right)+\left\langle\boldsymbol{w}_{t}, z_{t}\right\rangle+\frac{1}{2 \beta_{t}}\left\|z_{t}\right\|_{t, *}^{2}
\end{aligned}
$$

The Fenchel-Young inequality implies

$$
\sum_{t=1}^{T} \Delta_{t}=f_{T}^{*}\left(\theta_{T+1}\right) \geq\left\langle u, \theta_{T+1}\right\rangle-f_{T}(u)=\sum_{t=1}^{T}\left\langle u, z_{t}\right\rangle-f_{T}(u)
$$

Combining the upper and lower bound on Δ_{t} and summing over t we get the first statement.

Online mirror descent

Proof.

(continued) We now prove the second statement. Recalling again $w_{t}=\nabla f_{t}^{*}\left(\boldsymbol{\theta}_{t}\right)$, we have that (3) implies

$$
f_{t}^{*}\left(\theta_{t}\right)=\left\langle w_{t}, \theta_{t}\right\rangle-f_{t}\left(w_{t}\right) .
$$

On the other hand, the Fenchel-Young inequality implies that

$$
-f_{t-1}^{*}\left(\theta_{t}\right) \leq f_{t-1}\left(w_{t}\right)-\left\langle w_{t}, \theta_{t}\right\rangle .
$$

Combining the two we get $f_{t}^{*}\left(\theta_{t}\right)-f_{t-1}^{*}\left(\theta_{t}\right) \leq f_{t-1}\left(w_{t}\right)-f_{t}\left(w_{t}\right)$.

Online mirror descent

Regret bounds for OMD applied to three different classes of time-varying regularizers. While the composite setting $\left(\ell_{t}(\cdot)+F(\cdot)\right)$ is considered more difficult than the standard one, here we show that this setting can be efficiently solved using OMD with a specific choice of the timevarying regularizer.

Corollary 1

Let S a convex set, $F: S \rightarrow \mathbb{R}$ be a convex function, and let $g_{1}, g_{2}, \ldots, g_{T}$ be a sequence of convex functions $g_{t}: S \rightarrow \mathbb{R}$ such that $g_{t}(u) \leq g_{t+1}(u)$ for all $t=1,2, \ldots, T$ and all $u \in S$. Fix $\eta>0$ and assume $f_{t}=g_{t}+\eta t F$ are β_{t} -strongly convex w.r.t. $\|\cdot\|_{t}$. For each $t=1,2, \ldots, T$ let $\|\cdot\|_{t, *}$ be the dual norm of $\|\cdot\|_{t}$ is run on the input sequence $z_{t}=-\eta \ell_{t}^{\prime}$ for some $\ell_{t}^{\prime} \in \partial \ell_{t}\left(w_{t}\right)$, then

$$
\begin{equation*}
\sum_{t=1}^{T}\left(\ell_{t}\left(w_{t}\right)+F\left(w_{t}\right)\right)-\sum_{t=1}^{T}\left(\ell_{t}(u)+F(u)\right) \leq \frac{g_{T}(u)}{\eta}+\eta \sum_{t=1}^{T} \frac{\left\|\ell_{t}^{\prime}\right\|_{t, *}^{2}}{2 \beta_{t}} \tag{5}
\end{equation*}
$$

for all $u \in S$.

Online mirror descent

Corollary 1 (continued)

Moreover, if $f_{t}=g \sqrt{t}+\eta t F$ where $g: S \rightarrow \mathbb{R}$ is β-strongly convex w.r.t. $\|\cdot\|$, then

$$
\begin{equation*}
\sum_{t=1}^{T}\left(\ell_{t}\left(w_{t}\right)+F\left(w_{t}\right)\right)-\sum_{t=1}^{T}\left(\ell_{t}(u)+F(u)\right) \leq \sqrt{T}\left(\frac{g(u)}{\eta}+\frac{\eta}{\beta} \max _{t \leq T}\left\|\ell_{t}^{\prime}\right\|_{*}^{2}\right) \tag{6}
\end{equation*}
$$

for all $u \in S$.
Finally, if $f_{t}=t F$, where F is β-strongly convex w.r.t. $\|\cdot\|$, then

$$
\begin{equation*}
\sum_{t=1}^{T}\left(\ell_{t}\left(w_{t}\right)+F\left(w_{t}\right)\right)-\sum_{t=1}^{T}\left(\ell_{t}(u)+F(u)\right) \leq \max _{t \leq T}\left\|\ell_{t}^{\prime}\right\|_{*}^{2} \frac{(1+\ln T)}{2 \beta} \tag{7}
\end{equation*}
$$

for all $u \in S$.

Online mirror descent

Proof.

By convexity, $\ell_{t}\left(w_{t}\right)-\ell_{t}(u) \leq \frac{1}{\eta}\left\langle z_{t}, u-w_{t}\right\rangle$. Using Lemma 1 we have,
$\sum_{t=1}^{T}\left\langle z_{t}, u-w_{t}\right\rangle \leq g_{T}(u)+\eta T F(u)+\eta^{2} \sum_{t=1}^{T} \frac{\left\|\ell_{t}^{\prime}\right\|_{t, *}^{2}}{2 \beta_{t}}+\eta \sum_{t=1}^{T}\left((t-1) F\left(w_{t}\right)-t F\left(w_{t}\right)\right)$
where we used the fact that the terms $g_{t-1}\left(w_{t}\right)-g_{t}\left(w_{t}\right)$ are nonpositive as per our assumption. Reordering terms we obtain (5).
In order to obtain (6) it is sufficient to note that f_{t} is $\beta \sqrt{t}$-strongly convex and the inequality $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2 \sqrt{T}$ concludes the proof.
Finally, bound (7) is proven by observing that $f_{t}=t F$ is βt-strongly convex and the inequality $\sum_{t=1}^{T} \frac{1}{t} \leq 1+\ln T$ concludes the proof.

Online regression with square loss

- We apply Lemma 1 to recover known regret bounds for online regression with the square loss.
- For simplicity, we set $\mathbb{X}=\mathbb{R}^{d}$ and let the inner product $\langle u, x\rangle=u^{\top} x$
- We also set $\ell_{t}(u)=\frac{1}{2}\left(y_{t}-u^{\top} x_{t}\right)^{2}$ for examples $\left(x_{t}, y_{t}\right) \in \mathbb{R}^{d} \times \mathbb{R}$

Online regression with square loss

- Specialize OMD to the Vovk-Azoury-Warmuth(VAW) algorithm for online regression
- VAW algorithm predicts with, at each time step t,

$$
\begin{aligned}
w_{t} & =\underset{w}{\operatorname{argmin}} \frac{a}{2}\|w\|^{2}+\frac{1}{2} \sum_{s=1}^{t-1}\left(y_{s}-w^{\top} x_{s}\right)^{2}+\frac{1}{2}\left(w^{\top} x_{t}\right)^{2} \\
& =\underset{w}{\operatorname{argmin}} \frac{1}{2} w^{\top}\left(a l+\sum_{i=1}^{t} x_{s} x_{s}^{\top}\right) w-\sum_{s=1}^{t-1} y_{s} w^{\top} x_{s} \\
& =\left(a l+\sum_{s=1}^{t} x_{s} x_{s}^{\top}\right)^{-1} \sum_{i=1}^{t-1} y_{s} x_{s}
\end{aligned}
$$

- Now, by letting $A_{0}=a l_{d}, A_{t}=A_{t-1}+x_{t} x_{t}^{\top}$ for $t \geq 1$, and $z_{s}=y_{s} x_{s}$, we obtain the OMD update $w_{t}=A_{t}^{-1} \theta_{t}=\nabla f_{t}^{*}\left(\theta_{t}\right)$, where $f_{t}(u)=\frac{1}{2} u^{\top} A_{t} u$ and $f_{t}^{*}(\theta)=\frac{1}{2} \theta^{\top} A_{t}^{-1} \theta$.
- Note) z_{t} is not equal to the negative gradient of the square loss.

Online regression with square loss

- The regret bound of this algorithm is recovered from Lemma 1 by noting that f_{t} is 1 -strongly convex w.r.t. the norm $\|u\|_{t}=\sqrt{u^{\top} A_{t} u} .\|u\|_{t, *}=\sqrt{u^{\top} A_{t}^{-1} u}$.
- Hence, the regret bound is

$$
\begin{aligned}
R_{T}(u)= & \frac{1}{2} \sum_{t=1}^{T}\left(y_{t}-w_{t}^{\top} x_{t}\right)^{2}-\frac{1}{2} \sum_{t=1}^{T}\left(y_{t}-u^{\top} x_{t}\right)^{2} \\
= & \sum_{t=1}^{T}\left(y_{t} u^{\top} x_{t}-y_{t} w_{t}^{\top} x_{t}\right)-f_{T}(u)+\frac{a}{2}\|u\|^{2}+\frac{1}{2} \sum_{t=1}^{T}\left(w_{t}^{\top} x_{t}\right)^{2} \\
\leq & f_{T}(u)+\sum_{t=1}^{T}\left(\frac{y_{t}^{2}\left\|x_{t}\right\|_{t, *}^{2}}{2}+f_{t}^{*}\left(\theta_{t}\right)-f_{t-1}^{*}\left(\theta_{t}\right)\right)-f_{T}(u)+\frac{a}{2}\|u\|^{2} \\
& +\frac{1}{2} \sum_{t=1}^{T}\left(w_{t}^{\top} x_{t}\right)^{2} \\
\leq & \frac{a}{2}\|u\|^{2}+\frac{Y^{2}}{2} \sum_{t=1}^{T} x_{t}^{\top} A_{t}^{-1} x_{t}
\end{aligned}
$$

since $f_{t}^{*}\left(\theta_{t}\right)-f_{t-1}^{*}\left(\theta_{t}\right) \leq f_{t-1}\left(w_{t}\right)-f_{t}\left(w_{t}\right)=-\frac{1}{2}\left(w_{t}^{\top} x_{t}\right)^{2}$, and where $Y=\max _{t}\left|y_{t}\right|$.

Scale-invariant algorithms

- We introduce two new scale invariant algorithms for online linear regression with an arbitrary convex and Lipschitz loss function.
- Let $\mathbb{X}=\mathbb{R}^{d}$ and let the inner product $\langle u, x\rangle$ be the standard dot product $u^{\top} x$

Scale-invariant algorithms

- We assume
- For loss $\ell_{t}(w)=\ell\left(w^{\top} x_{t}, y_{t}\right), \ell$ is L-Lipschitz for each y_{t} and convex.
- OMD is run with $z_{t}=-\eta \ell_{t}^{\prime}$ where, as usual, $\ell_{t}^{\prime} \in \partial \ell_{t}\left(w_{t}\right)$.
- In the rest of this section, the following notation is used:

$$
\begin{array}{r}
b_{t, i}=\max _{s=1, \ldots, t}\left|x_{s, i}\right|, m_{t}=\max _{s=1, \ldots, t}\left\|x_{s}\right\|_{0}, p_{t}=2 \ln m_{t}, \text { and } \\
\beta_{t}=\sqrt{e L^{2}\left(p_{t}-1\right)+\sum_{s=1}^{t-1}\left(p_{s}-1\right)\left(\sum_{i=1}^{d}\left(\frac{\left|\ell_{s, i}^{\prime}\right|}{b_{s, i}}\right)^{p_{s}}\right)^{2 / p_{s}}}
\end{array}
$$

- The time-varying regularizers we consider are defined as follows,

$$
\begin{align*}
& f_{t}(u)=\frac{\beta_{t}}{2}\left(\sum_{i=1}^{d}\left(\left|u_{i}\right| b_{t, i}\right)^{q_{t}}\right)^{2 / q_{t}} \text { for } q_{t}=\frac{p_{t}}{p_{t}-1} \tag{8}\\
& f_{t}(u)=\frac{\sqrt{d}}{2}\left(\sum_{i=1}^{d}\left(\left|u_{i}\right| b_{t, i}\right)^{2} \sqrt{L^{2}+\sum_{s=1}^{t-1}\left(\frac{\ell_{s, i}^{\prime}}{b_{s, i}}\right)^{2}}\right) \tag{9}
\end{align*}
$$

Scale-invariant algorithms

- OMD update :
- For regularizers of type (8) we have

$$
\left(\nabla f_{t}^{*}(\theta)\right)_{j}=\frac{1}{\beta_{t}\left(p_{t}-1\right)}\left(\sum_{i=1}^{d}\left(\frac{\left|\theta_{i}\right|}{b_{t, i}}\right)^{p_{t}}\right)^{2 / p_{i}-1} \frac{\left|\theta_{j}\right|^{p_{t}-1}}{b_{t, j}^{p_{t}}} \operatorname{sign}\left(\theta_{j}\right)
$$

- For regularizers of type (9) we have

$$
\left(\nabla f_{t}^{*}(\theta)\right)_{j}=\frac{\theta_{j}}{b_{t, j}^{2} \sqrt{d} \sqrt{L^{2}+\sum_{s=1}^{t-1}\left(\frac{\ell_{s, j}^{\prime}}{b_{s, j}}\right)^{2}}}
$$

- Computation: using the fact that if $g(w)=a f(w)$, then $g^{*}(\theta)=a f^{*}\left(\frac{\theta}{a}\right)$, and Lemma 2 in the appendix.
- Note) $\boldsymbol{w}_{t}^{\top} \boldsymbol{x}_{t}$ is invariant to the rescaling of individual features.

Scale-invariant algorithms

We prove the following regret bounds.

Theorem 1

If $O M D$ is run using regularizers of type (8), then for any $u \in \mathbb{R}^{d}$

$$
R_{T}(u) \leq L \sqrt{e(T+1)\left(2 \ln m_{T}-1\right)}\left(\frac{1}{2 \eta}\left(\sum_{i=1}^{d}\left|u_{i}\right| b_{T, i}\right)^{2}+\eta\right)
$$

If OMD is run using regularizers of type (9), then for any $u \in \mathbb{R}^{d}$

$$
R_{T}(u) \leq L \sqrt{d(T+1)}\left(\frac{1}{2 \eta} \sum_{i=1}^{d}\left(u_{i} b_{T, i}\right)^{2}+\eta\right)
$$

- Note) both bounds are invariant with respect to arbitrary scaling of individual coordinates of the data points x_{t} : if the i th feature is rescaled $x_{t, i} \rightarrow c x_{t, i}$ for all t, then a corresponding rescaling $u_{i} \rightarrow u_{i} / c$, leaves the bounds unchanged.

Scale-invariant algorithms

Proof.

For the first algorithm, note that $m_{t}^{2 / p_{t}}=e$, and setting $q_{t}=\left(1-\frac{1}{p_{t}}\right)^{-1}$, we have $q_{t}\left(1-p_{t}\right)=-p_{t}$. Further note that $f_{t}^{*}\left(\theta_{t}\right)-f_{t-1}^{*}\left(\theta_{t}\right) \leq f_{t-1}\left(w_{t}\right)-f_{t}\left(w_{t}\right) \leq 0$, where $f_{t-1} \leq f_{t}$ because q_{t} is decreasing, $b_{t, i}$ is increasing, and β_{t} is also increasing. Hence, using the convexity of ℓ_{t} and Lemma 1 , we may write

$$
\begin{aligned}
R_{T}(\boldsymbol{u}) & \leq \sum_{t=1}^{T}\left(\ell_{t}^{\prime}\right)^{\top}\left(\boldsymbol{w}_{t}-\boldsymbol{u}\right) \\
& \leq \frac{\beta_{T}}{2 \eta}\left(\sum_{i=1}^{d}\left(\left|u_{i}\right| b_{T, i}\right)^{q_{T}}\right)^{2 / q_{T}}+\eta \sum_{t=1}^{T} \frac{1}{2 \beta_{t}\left(q_{t}-1\right)}\left(\sum_{i=1}^{d} \frac{\left|\ell_{t, i}^{\prime}\right|^{p_{t}}}{b_{t, i}^{p_{t}}}\right)^{2 / p_{t}}
\end{aligned}
$$

For the rest of the proof, reference the paper.

Binary classification

- We show that mistake bound of special case of online convex optimization
- Let \mathbb{X} be any finite-dimensional inner product space.
- $\left(x_{t}, y_{t}\right) \in \mathbb{X} \times\{-1,+1\}$, let $\ell_{t}(w)$ be hinge loss $\left[1-y_{t}\left\langle w, x_{t}\right\rangle\right]_{+}$
- It is easy to verify that the hinge loss satisfies :

If $\ell_{t}(w)>0$ then $\ell_{t}(u) \geq 1+\left\langle u, \ell_{t}^{\prime}\right\rangle$ for all $u, w \in \mathbb{R}^{d}$ with $\ell_{t}^{\prime} \in \partial \ell_{t}(w)$
(this is used for the proof of Lemma 3)

- Note that when $\ell_{t}(w)>0, \partial \ell_{t}(w)$ is the singleton $\left\{\nabla \ell_{t}(w)\right\}$

Binary classification

- Set $z_{t}=-\eta_{t} \ell_{t}^{\prime}$ if $\ell_{t}\left(w_{t}\right)>0$, and $z_{t}=0$ otherwise.
- Made a prediction mistake is defined by the condition $y_{t} \omega_{t}^{\top} x_{t} \leq 0$ or, equivalently, by $\ell_{t}\left(w_{t}\right) \geq 1$
- \mathcal{M} : the subset of steps t such that $y_{t} w_{t}^{\top} x_{t} \leq 0$ and by M its cardinality
- \mathcal{U} : the set of margin error steps; that is, steps t where $y_{t} w_{t}^{\top} x_{t}>0$ and $\ell_{t}\left(w_{t}\right)>0$ and we use U to denote the cardinality of \mathcal{U}

Binary classification

$$
\text { Let } L(u)=\sum_{t=1}^{T}\left[1-y_{t}\left\langle u, x_{t}\right\rangle\right]_{+} \text {for } u \in \mathbb{X}
$$

Corollary 2

Assume $O M D$ is run with $f_{t}=f$, where f has domain \mathbb{X}, is β-strongly convex with respect to the norm $\|\cdot\|$, and satisfies $f(\lambda u) \leq \lambda^{2} f(u)$ for all $\lambda \in \mathbb{R}$ and all $u \in \mathbb{X}$. Further assume the input sequence is $z_{t}=\eta_{t} y_{t} x_{t}$ for some $0 \leq \eta_{t} \leq 1$ such that $\eta_{t}=1$ whenever $y_{t}\left\langle w_{t}, x_{t}\right\rangle \leq 0$. Then, for all $T \geq 1$

$$
M \leq \underset{u \in \mathbb{X}}{\operatorname{argmin}} L(u)+D+\frac{2}{\beta} f(u) X_{T}^{2}+X_{T} \sqrt{\frac{2}{\beta} f(u) L(u)}
$$

where $M=|\mathcal{M}|, X_{t}=\max _{i=1, \ldots, t}\left\|x_{i}\right\|_{*}$ and

$$
D=\sum_{t \in \mathcal{U}} \eta_{t}\left(\frac{\eta_{t}\left\|\boldsymbol{x}_{t}\right\|_{*}^{2}+2 \beta y_{t}\left\langle w_{t}, x_{t}\right\rangle}{X_{t}^{2}}-2\right)
$$

Binary classification

Proof.

Fix any $u \in \mathbb{X}$. Using the second bound of Lemma 3 in the "Appendix", with the assumption $\eta_{t}=1$ when $t \in \mathcal{M}$, we get

$$
\begin{aligned}
M & \leq L(u)+\sqrt{2 f(u)} \sqrt{\sum_{t \in \mathcal{M}} \frac{\left\|x_{t}\right\|_{*}^{2}}{\beta}+\sum_{t \in \mathcal{U}}\left(\frac{\eta_{t}^{2}}{\beta}\left\|x_{t}\right\|_{*}^{2}+2 \eta_{t} y_{t}\left\langle w_{t}, x_{t}\right\rangle\right)}-\sum_{t \in \mathcal{U}} \eta_{t} \\
& \leq L(u)+X_{T} \sqrt{\frac{2}{\beta} f(u)} \sqrt{M+\sum_{t \in \mathcal{U}} \frac{\eta_{t}^{2}\left\|x_{t}\right\|_{*}^{2}+2 \beta \eta_{t} y_{t}\left\langle w_{t}, x_{t}\right\rangle}{X_{t}^{2}}}-\sum_{t \in \mathcal{U}} \eta_{t}
\end{aligned}
$$

where we have used the fact that $X_{t} \leq X_{T}$ for all $t=1, \ldots, T$. Solving for M we get

$$
M \leq L(u)+\frac{1}{\beta} f(u) X_{T}^{2}+X_{T} \sqrt{\frac{2}{\beta} f(u)} \sqrt{\frac{1}{2 \beta} X_{T}^{2} f(u)+L(u)+D^{\prime}}-\sum_{t \in \mathcal{U}} \eta_{t}
$$

with $\frac{1}{2 \beta} X_{T}^{2} f(u)+L(u)+D^{\prime} \geq 0$, and $D^{\prime}=\sum_{t \in \mathcal{U}}\left(\frac{\eta_{t}^{2}\left\|x_{t}\right\|_{*}^{2}+2 \beta \eta_{t} y_{t}\left\langle w_{t}, x_{t}\right\rangle}{X_{t}^{2}}-\eta_{t}\right)$.
For the rest of proof, see the paper.

Given $\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{R}_{+}$and $q \in(1,2]$, define the regularization function by

$$
f(w)=\frac{1}{2(q-1)}\left(\sum_{i=1}^{d}\left|w_{i}\right|^{q} a_{i}\right)^{2 / q}
$$

Lemma 2

The Fenchel conjugate of f is

$$
f^{*}(\theta)=\frac{1}{2(p-1)}\left(\sum_{i=1}^{d}\left|\theta_{i}\right|^{p} a_{i}^{1-p}\right)^{2 / p} \quad \text { for } p=\frac{q}{q-1}
$$

Moreover, the function $f(w)$ is 1 -strongly convex with respect to the norm

$$
\left(\sum_{i=1}^{d}\left|x_{i}\right|^{q} a_{i}\right)^{1 / q}
$$

whose dual norm is defined by

$$
\left(\sum_{i=1}^{d}\left|\theta_{i}\right|^{p} a_{i}^{1-p}\right)^{1 / p}
$$

Appendix

Lemma 3

Assume $O M D$ is run with functions $f_{1}, f_{2}, \ldots, f_{T}$ defined on \mathbb{X} and such that each f_{t} is β_{t} strongly convex with respect to the norm $\|\cdot\|_{t}$ and $f_{t}(\lambda u) \leq \lambda^{2} f_{t}(u)$ for all $\lambda \in \mathbb{R}$ and all $u \in S$. For each $t=1,2, \ldots, T$ let $\|_{t, *}$ be the dual norm of $\|\cdot\|_{t}$. Assume further the input sequence is $z_{t}=-\eta_{t} \ell_{t}^{\prime}$ for some $\eta_{t}>0$, where $\ell_{t}^{\prime} \in \partial \ell_{t}\left(w_{t}\right), \ell_{t}\left(w_{t}\right)=0$ implies $\ell_{t}^{\prime}=\mathbf{0}$, and $\ell_{t}=\ell\left(\left\langle\cdot, \boldsymbol{x}_{t}\right\rangle, y_{t}\right)$ satisfies (20). Then, for all $T \geq 1$

$$
\sum_{t \in \mathcal{M} \cup \mathcal{U}} \eta_{t} \leq L_{\eta}+\lambda f_{T}(u)+\frac{1}{\lambda}\left(B+\sum_{t \in \mathcal{M} \cup \mathcal{U}}\left(\frac{\eta_{t}^{2}}{2 \beta_{t}}\left\|\ell_{t}^{\prime}\right\|_{t, *}^{2}-\eta_{t}\left\langle w_{t}, \ell_{t}^{\prime}\right\rangle\right)\right)
$$

for any $u \in S$ and any $\lambda>0$, where

$$
L_{\eta}=\sum_{t \in \mathcal{M} \cup \mathcal{U}} \eta_{t} \ell_{t}(u) \text { and } B=\sum_{t=1}^{T}\left(f_{t}^{*}\left(\theta_{t}\right)-f_{t-1}^{*}\left(\theta_{t}\right)\right)
$$

In particular, choosing the optimal λ, we obtain

$$
\sum_{t \in \mathcal{M} \cup \mathcal{U}} \eta_{t} \leq L_{\eta}+2 \sqrt{f_{T}(u)} \sqrt{\left[B+\sum_{t \in \mathcal{M} \cup U}\left(\frac{\eta_{t}^{2}}{2 \beta_{t}}\left\|\ell_{t}^{\prime}\right\|_{t, *}^{2}-\eta_{t}\left\langle w_{t}, \ell_{t}^{\prime}\right\rangle\right)\right]_{+}}
$$

