A generalized online mirror descent

with applications to classification and regression

Francesco Orabona et al. Machine Learning, 2015.

presented by Boyoung Kim

May 31, 2019

1/25



Online convex optimization

» X be any finite-dimensional linear space equipped with inner product (-, ).

eg) X = R? where (-, -) is the vector dot product

» At each step t = 1,2,... the algorithm chooses w; € S C X and then

observes a convex loss function ¢; : S — R, the goal is to control the regret

Rr(u) = € (we) = > £e(u) (1)

forall u e S.

» In these settings for a fixed but unknown example (x¢, y:) € X x R the loss

suffered at step t is defined as ¢ (w:) = £ ({wr, X¢) , yt).
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Further notation and definitions

» We consider functions f that are closed and convex with domain S C X.

» |ts Fenchel conjugate f* : X — R is defined by
7 (u) = sup,cs((v, u) — f(v))
» The domain of f* is always X.
B fEE — f
» ||ul| : A generic norm of a vector u € X.

» dual || - ||« is the norm defined by ||v|« = sup,{{u, v) : |ju]| < 1}.
» The Fenchel-Young inequality states that f(u) + f*(v) > (u, v) for all v, u

» A vector x is a subgradient of a convex function f at v
if f(u) — f(v) > (u—v,x) for any u in the domain of f.
> Jf(v) : the set of all the subgradients of f at v
» Vf(v) : the gradient of f at v
» For all x € 9f(v) we have that f(v) 4 f*(x) = (v, x)
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Further notation and definitions

> A function f is [ -strongly convex with respect to a norm || - || if for any

u, v in its domain, and any x € 9f(u)

B

F(v) 2 F(u) + (v — ) + Slu— vl

» The Fenchel conjugate f* of a 8 -strongly convex function f is everywhere
differentiable and % -strongly smooth. This means that, for all u,v € X,

F(v) < F*(u) + (VF*(0),v — u) + %nu — P

» A further property of strongly convex functions f : S — R is the following:
» ForallueX,
V*(u) = argmax({v, u) — f(v)) (2)
vES
> This implies
£V (u) + f*(u) = (VF*(u), u) 3)
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Online mirror descent

» The standard OMD algorithm sets

> w: = VF*(0:) where f is a strongly convex regularizer
» 0; is updated using subgradient descent: ;1 = 6 — n¢} for n > 0 and
0, € Ols (we)

» We genaralize OMD in two ways :

» We allow f to change over time

» We do not necessarily use the subgradient of the loss to update 6;

Algorithm 1 Online Mirror Descent

1: Parameters: A sequence of strongly convex functions fi, f, ... defined on a common convex domain
Sci

2: Initialize: #; =0 X

Bforr=1.2....do

4:  Choose w; =V f*(8;)

5: Observe 7y € X

6: Update ;| = 0; +z;

7: end for
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Online mirror descent

Lemma 1

Assume OMD is run with functions fi, f, . .., fr defined on a common convex

domain S C X and such that each f, is B; -strongly convex with respect to the
norm || - ||¢. Let || - ||e,« be the dual norm of || - ||¢, for t =1,2,..., T. Then, for
anyu€ S,

Z ) < o Z(

+ £ (00) — filq (Gt)>

where we set fy'(0) = 0. Moreover, for all t > 1, we have

£ (0:) — 21 (0:) < frx (we) — fi (we) (4)
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Online mirror descent

Proof.
Let A = £ (0cs1) — 7y (00). Then S50, Ae = F7 (0742) — 5 (02) = £ (0742).
Since f;* are i -strongly smooth with respect to || - ||¢,«, and 6ry1 = 0; + z¢,

Ap = 7 (0r11) — 7 (0:) + 17 (0:) — 21 (0¢)

1
S A (00) = £21(00) + (VF" (60¢), 2¢) + 25 llzellZ.
t

1
=£(00) — £71(00) + (we, z2) + — [|z:|7,
20t ’

The Fenchel-Young inequality implies

T T
D> D=7 (0741) > (u,0741) — fr(u) =D (u,z¢) — fr(u)
t=1 t=1

Combining the upper and lower bound on A; and summing over t we get the first

statement. O
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Online mirror descent

Proof.

(continued) We now prove the second statement. Recalling again w; = V£ (0¢), we
have that (3) implies

fe' (0c) = (we, 0r) — fe (wr) -
On the other hand, the Fenchel-Young inequality implies that

— 51 (0r) < fe—1 (we) — (we, Or) .

Combining the two we get £ (0:) — £ ; (0:) < fi1 (we) — i (we). O
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Online mirror descent

Regret bounds for OMD applied to three different classes of time-varying
regularizers. While the composite setting (4:(-) + F(-)) is considered more difficult
than the standard one, here we show that this setting can be efficiently solved using

OMD with a specific choice of the timevarying regularizer.

Corollary 1

Let S a convex set, F : S — R be a convex function, and let g1, g>,...,g1 be
a sequence of convex functions g: : S — R such that gi(u) < ge+1(u) for all

t=1,2,..., T and all u € S. Fixn > 0 and assume f, = g+ + ntF are B:

-strongly convex w.r.t. || - ||¢. Foreacht =1,2,..., T let|| - ||¢,« be the dual
norm of || - ||¢ is run on the input sequence z: = —n{; for some £; € 9¢; (wy),
then
L u Hf’llt .
D (e (we) + F (we)) = > (Le(u) + F(u)) < ) 4 Z (5)
=1 t=1

forallues.
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Online mirror descent

Corollary 1 (continued)

Moreover, if f, = g/t + ntF where g : S — R is 3 -strongly convex w.r.t. || - ||

, then
glu)
tz;(& we) + F (we)) tz;(é(u)+Fu))<f< Brtn<a%<||é|| (6)
foralluecS.
Finally, if f; = tF, where F is B -strongly convex w.r.t. || - || , then
(1+1In T)
tzg(ﬁt we) + F (W) ; u) + F(u) <maxH€ H 25 )]

forallu e S.
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Online mirror descent

Proof.
By convexity, £¢ (w;) — £:(u) < % (z¢,u — we) . Using Lemma 1 we have,
L LN [VATE T
D (e = we) < gr() + 0 TF() 472 30 =255 4 37 (= DF () = tF (we))
t=1 t=1 t t=1

where we used the fact that the terms gy—1 (w:) — g¢ (w:) are nonpositive as per our
assumption. Reordering terms we obtain (5).

In order to obtain (6) it is sufficient to note that f; is 31/t -strongly convex and the
inequality Zz—zl % < 2V/T concludes the proof.

Finally, bound (7) is proven by observing that f; = tF is 3t -strongly convex and the
inequality ZZ—ZI % <1+ InT concludes the proof. O
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Online regression with square loss

» We apply Lemma 1 to recover known regret bounds for online regression
with the square loss.

> For simplicity, we set X = R and let the inner product (u,x) = u'x

> We also set £¢(u) = % (ye — uTxt)2 for examples (x:,y:) € R x R
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Online regression with square loss

> Specialize OMD to the Vovk—Azoury—Warmuth(VAW) algorithm for online
regression

» VAW algorithm predicts with, at each time step t,
2 1 2
argvrvningﬂwﬂ2 5 Z ( —w xs) + 5 (WTXt)
t—1
= argmln WT (al + szxS ) w — ZysWsz
s=1

=14

(al + ZXSXST> Zysxs
s=1 i=1

> Now, by letting Ao = alg, As = Ac_1 + xex, for t > 1, and zs = yexs, we
obtain the OMD update we = A; 0, = V£ (0:), where f(u) = Ju' Acu
and £7(0) = 20T A0

Wt

> Note) z is not equal to the negative gradient of the square loss.

13/25



Online regression with square loss

»> The regret bound of this algorithm is recovered from Lemma 1 by noting that f;
is 1-strongly convex w.r.t. the norm |[jul|; =

uT Asu.

uTA?
» Hence, the regret bound is

Rr(u) = %i (yt - WtTXt>2 %i <}’t —u Xt)2
pay

t=1

o~

= ZT: <}’tu Xt — YWy Xt) — fr(u)+ *HUHZ +3 Z (Wt Xt)2
-1

t=1
T

II t” * * * a
<+ 3 (0= s 0) < )+ e
t=1

a
5 U||2 th t xe

since f* (0:) —

*1(0:) < fox(we) — fe (we) = —% (WtTXt)z, and where
Y = max: |yt|.
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Scale-invariant algorithms

» We introduce two new scale invariant algorithms for online linear

regression with an arbitrary convex and Lipschitz loss function.

> Let X = R? and let the inner product (u, x) be the standard dot product

UTX
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Scale-invariant algorithms

> We assume

> For loss £¢(w) = ¢ (wat,yt), ¢ is L -Lipschitz for each y: and convex.
»> OMD is run with z; = —n¥} where, as usual, ¢, € 9l (we).
> In the rest of this section, the following notation is used:

bt,i = MaXs=1,...,t

xs,,-| ,Me = maxs=1,....t [|Xs]lg, Pt = 2In m¢, and

!’
S,

i1 d o psy 2/ps
Be = eLz(pt—1)+Z(ps—1)(Z<b’,> )
s=1 S»!

i=1

» The time-varying regularizers we consider are defined as follows,

d 2/aqt
=5 (o) e P ®)

i=1

pt—1
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Scale-invariant algorithms

» OMD update :

> For regularizers of type (8) we have

VFH(6)), = 1 NG e [ 0;
(V£(0)); = Bilpi—1) Z(E) P sign (6;)

i=1

> For regularizers of type (9) we have

(VE(0)); = %

’ 2
Iy
b2,y 12+ i ()

» Computation : using the fact that if g(w) = af (w), then

g*(0) = af* (£), and Lemma 2 in the appendix.

a

> Note) w{ x; is invariant to the rescaling of individual features.
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Scale-invariant algorithms

We prove the following regret bounds.

Theorem 1

If OMD is run using regularizers of type (8), then for any u € R?

d 2
1
RT(U)SL\/S(T-FI)(QMITIT—].) % <Z|ui|bT’i> +n
i=1
If OMD is run using regularizers of type (9), then for any u € RY

d
Rr(u) < Ly/d(T +1) (21,7 > (uibr)® + 77) '

i=1

> Note) both bounds are invariant with respect to arbitrary scaling of individual
coordinates of the data points x; : if the j th feature is rescaled x;; — cx; ; for

all t, then a corresponding rescaling u; — u;/c, leaves the bounds unchanged.
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Scale-invariant algorithms

Proof.

For the first algorithm, note that mf/pf

-1
= e, and setting qr = <1 — i) , we have

g+ (1 — pt) = —p¢. Further note that £* (6:) — ;1 (6:) < fi1 (w:e) — fe (wz) <O,
where f;_1 < f; because q; is decreasing, b; ; is increasing, and f3; is also increasing.

Hence, using the convexity of ¢; and Lemma 1, we may write

.
Rr(u) <> ()" (we — u)

t=1
pt\ 2/pt

/
t

d 2/ar T d
Ib l
(Z il br, ) Y e (2

i
N
i=1 t

For the rest of the proof, reference the paper. O
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Binary classification

» We show that mistake bound of special case of online convex optimization

» Let X be any finite-dimensional inner product space.
> (xe,yt) € X x {=1,+1}, let £:(w) be hinge loss [1 — y: (w, x¢)] ,

> |t is easy to verify that the hinge loss satisfies :
If £:(w) > 0 then £e(u) > 1+ (u,£,) for all u,w € RY with £, € 9¢(w)

(this is used for the proof of Lemma 3)
> Note that when £;(w) > 0, 8¢;(w) is the singleton {V{:(w)}
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Binary classification

> Set zz = —nely if £¢ (we) > 0, and z: = 0 otherwise.
> Made a prediction mistake is defined by the condition y:w; x; < 0 or,
equivalently, by 4, (w:) > 1
> M : the subset of steps t such that y;w,” x; < 0 and by M its cardinality
» U : the set of margin error steps; that is, steps t where thtTXt > 0 and

£e (w) > 0 and we use U to denote the cardinality of U
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Binary classification

Let L(u) = 22—:1 [1—ye{u,x)], for ueX

Corollary 2

Assume OMD is run with f; = f, where f has domain X, is 3 -strongly convex
with respect to the norm || - ||, and satisfies f(Au) < A\2f(u) for all A € R and
all u € X. Further assume the input sequence is z; = n:y:x; for some

0 < ¢ <1 such that n, = 1 whenever y: (we, x¢) < 0. Then, forall T > 1

M < argminL(u) + D + gf(u)x% + Xt gf(u)L(u)
ueX ﬁ B

where M = | M|, X¢ = maxj=1,....+ ||xi||, and

me ||xel|% + 2Bye (we, xe)
oy (Ml i

teu

22/25



Binary classification

Proof.
Fix any u € X. Using the second bound of Lemma 3 in the "Appendix", with the
assumption 7 = 1 when t € M, we get

M<L<u>+WJ 5 Il 3 (% 2 + 20 () ) =

teM B teu teu
2 2 ,
< L(u) + X7y | = f(u) M+Z"f el +)f2"ty‘ LGLI o
B teU t teU
where we have used the fact that X; < Xy forall t =1,..., T. Solving for M we get

1 2 1
M < L(u) + Ef(u)x% + XT\/Bf(u)\/wX%f(u) + L)+ D = ne

teu

2 2
lIxel12+28meye (we xe)
with 55 X7 f(u) + L(u) + D' > 0,and D' = 37,y (”f i th’““ L TR m)-

For the rest of proof, see the paper.
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Appendix

Given (a1,...,aq4) € R4 and g € (1, 2], define the regularization function by

d 2/q
1 q
0= g5 (3

Lemma 2

The Fenchel conjugate of f is

1 d 2/p
f () = — ;| at =P forp=—3_
Q 2(,,1)@" | ) p=.

Moreover, the function f(w) is 1 -strongly convex with respect to the norm

d 1/q
(30
i=1
whose dual norm is defined by

d 1/p
(z|e,-ra,1p) |

i=1
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Appendix

Lemma 3
Assume OMD is run with functions fi, f2, ..., fT defined on X and such that each f; is

Bt strongly convex with respect to the norm || - ||+ and fr(Au) < M\2f(u) for all A € R

and allu € S. Foreacht=1,2,..., T let||¢« be the dual norm of || - ||¢. Assume
further the input sequence is z; = —n¢l, for some n: > 0, where

0, € 8C: (we), L (we) = 0 implies £, = 0, and €; = € ({-,x¢) , yt) satisfies (20). Then,
forall T >1

> =

2
S sty <B+ > (;75||4>|3,*—m<ww>)>
te MuU teMuU ¢

for any u € S and any \ > 0, where
-

L, = Z nele(u) and B = Z (ft* (0:) — 24 (at))

te MuU t=1

In particular, choosing the optimal A\, we obtain

Z 77t§L77+2\/fT(U) I:B+ Z ( H t”t* nt<Whé;>):| .
+

teMuU te MUU
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