A generalized online mirror descent with applications to classification and regression

Francesco Orabona et al. Machine Learning, 2015.

presented by Boyoung Kim

May 31, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Online convex optimization

- X be any finite-dimensional linear space equipped with inner product (·, ·).
 eg) X = R^d where (·, ·) is the vector dot product
- At each step t = 1, 2, ... the algorithm chooses w_t ∈ S ⊆ X and then observes a convex loss function ℓ_t : S → R, the goal is to control the regret

$$R_{T}(u) = \sum_{t=1}^{T} \ell_{t}(w_{t}) - \sum_{t=1}^{T} \ell_{t}(u)$$
(1)

for all $u \in S$.

▶ In these settings for a fixed but unknown example $(x_t, y_t) \in \mathbb{X} \times \mathbb{R}$ the loss suffered at step *t* is defined as $\ell_t(w_t) = \ell(\langle w_t, x_t \rangle, y_t)$.

Further notation and definitions

- We consider functions f that are closed and convex with domain $S \subseteq X$.
- ▶ Its Fenchel conjugate $f^* : \mathbb{X} \to \mathbb{R}$ is defined by

$$f^*(u) = \sup_{v \in S}(\langle v, u \rangle - f(v))$$

- The domain of f* is always X.
- ► *f*** = *f*
- ▶ ||u|| : A generic norm of a vector $u \in X$.
 - dual $\|\cdot\|_*$ is the norm defined by $\|\mathbf{v}\|_* = \sup_u \{ \langle \mathbf{u}, \mathbf{v} \rangle : \|\mathbf{u}\| \le 1 \}.$
 - ▶ The Fenchel-Young inequality states that $f(u) + f^*(v) \ge \langle u, v \rangle$ for all v, u
- A vector x is a subgradient of a convex function f at v if $f(u) - f(v) \ge \langle u - v, x \rangle$ for any u in the domain of f.
 - $\partial f(v)$: the set of all the subgradients of f at v
 - ∇f(v) : the gradient of f at v
 - For all $x \in \partial f(v)$ we have that $f(v) + f^*(x) = \langle v, x \rangle$

Further notation and definitions

• A function f is β -strongly convex with respect to a norm $\|\cdot\|$ if for any u, v in its domain, and any $x \in \partial f(u)$

$$f(\mathbf{v}) \geq f(\mathbf{u}) + \langle \mathbf{x}, \mathbf{v} - \mathbf{u} \rangle + \frac{\beta}{2} \|\mathbf{u} - \mathbf{v}\|^2$$

The Fenchel conjugate f* of a β -strongly convex function f is everywhere differentiable and ¹/_β -strongly smooth. This means that, for all u, v ∈ X,

$$f^*(v) \leq f^*(u) + \langle
abla f^*(u), v-u
angle + rac{1}{2eta} \|u-v\|_*^2$$

• A further property of strongly convex functions $f : S \to \mathbb{R}$ is the following:

▶ For all $u \in X$,

$$\nabla f^*(u) = \underset{v \in S}{\operatorname{argmax}} (\langle v, u \rangle - f(v))$$
(2)

This implies

$$f(\nabla f^*(\boldsymbol{u})) + f^*(\boldsymbol{u}) = \langle \nabla f^*(\boldsymbol{u}), \boldsymbol{u} \rangle$$
(3)

- The standard OMD algorithm sets
 - $\boldsymbol{w}_{t} = \nabla f^{*}(\boldsymbol{\theta}_{t})$ where f is a strongly convex regularizer
 - θ_t is updated using subgradient descent: $\theta_{t+1} = \theta_t \eta \ell'_t$ for $\eta > 0$ and $\ell'_t \in \partial \ell_t (w_t)$
- We genaralize OMD in two ways :
 - We allow f to change over time
 - We do not necessarily use the subgradient of the loss to update θ_t

Algorithm 1 Online Mirror Descent

- Parameters: A sequence of strongly convex functions f₁, f₂,... defined on a common convex domain S ⊆ X.
 Initialize: θ₁ = 0 ∈ X
 for t = 1, 2, ... do
 Choose w_t = ∇ f_t^{*}(θ_t)
 Observe z_t ∈ X
 Update θ_{t+1} = θ_t + z_t
- 7: end for

Lemma 1

Assume OMD is run with functions $f_1, f_2, ..., f_T$ defined on a common convex domain $S \subseteq \mathbb{X}$ and such that each f_t is β_t -strongly convex with respect to the norm $\|\cdot\|_t$. Let $\|\cdot\|_{t,*}$ be the dual norm of $\|\cdot\|_t$, for t = 1, 2, ..., T. Then, for any $u \in S$,

$$\sum_{t=1}^{T} \left\langle z_t, u - w_t \right\rangle \leq f_T(u) + \sum_{t=1}^{T} \left(\frac{\|z_t\|_{t,*}^2}{2\beta_t} + f_t^*\left(\theta_t\right) - f_{t-1}^*\left(\theta_t\right) \right)$$

where we set $f_0^*(\mathbf{0}) = 0$. Moreover, for all $t \ge 1$, we have

$$f_t^*\left(\boldsymbol{\theta}_t\right) - f_{t-1}^*\left(\boldsymbol{\theta}_t\right) \le f_{t-1}\left(w_t\right) - f_t\left(w_t\right) \tag{4}$$

Proof.

Let $\Delta_t = f_t^* (\theta_{t+1}) - f_{t-1}^* (\theta_t)$. Then $\sum_{t=1}^T \Delta_t = f_T^* (\theta_{T+1}) - f_0^* (\theta_1) = f_T^* (\theta_{T+1})$. Since f_t^* are $\frac{1}{\beta_t}$ -strongly smooth with respect to $\|\cdot\|_{t,*}$, and $\theta_{t+1} = \theta_t + z_t$,

$$egin{aligned} \Delta_t &= f_t^*\left(m{ heta}_{t+1}
ight) - f_t^*\left(m{ heta}_t
ight) + f_t^*\left(m{ heta}_t
ight) - f_{t-1}^*\left(m{ heta}_t
ight) \ &\leq f_t^*\left(m{ heta}_t
ight) - f_{t-1}^*\left(m{ heta}_t
ight) + \langle
abla f_t^*\left(m{ heta}_t
ight), z_t
angle + rac{1}{2eta_t}\left\|z_t
ight\|_{t,*}^2 \ &= f_t^*\left(m{ heta}_t
ight) - f_{t-1}^*\left(m{ heta}_t
ight) + \langle m{ heta}_t, z_t
angle + rac{1}{2eta_t}\left\|z_t
ight\|_{t,*}^2 \end{aligned}$$

The Fenchel-Young inequality implies

$$\sum_{t=1}^{T} \Delta_t = f_T^* \left(\theta_{T+1} \right) \geq \langle u, \theta_{T+1} \rangle - f_T(u) = \sum_{t=1}^{T} \langle u, z_t \rangle - f_T(u)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Combining the upper and lower bound on Δ_t and summing over t we get the first statement.

Proof.

(continued) We now prove the second statement. Recalling again $w_t = \nabla f_t^* (\theta_t)$, we have that (3) implies

$$f_t^*(\theta_t) = \langle w_t, \theta_t \rangle - f_t(w_t).$$

On the other hand, the Fenchel-Young inequality implies that

$$-f_{t-1}^{*}\left(\theta_{t}\right) \leq f_{t-1}\left(w_{t}\right) - \left\langle w_{t}, \theta_{t}\right\rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Combining the two we get $f_t^*(\theta_t) - f_{t-1}^*(\theta_t) \leq f_{t-1}(w_t) - f_t(w_t)$.

Regret bounds for OMD applied to three different classes of time-varying regularizers. While the composite setting $(\ell_t(\cdot) + F(\cdot))$ is considered more difficult than the standard one, here we show that this setting can be efficiently solved using OMD with a specific choice of the timevarying regularizer.

Corollary 1

Let S a convex set, $F : S \to \mathbb{R}$ be a convex function, and let g_1, g_2, \ldots, g_T be a sequence of convex functions $g_t : S \to \mathbb{R}$ such that $g_t(u) \le g_{t+1}(u)$ for all $t = 1, 2, \ldots, T$ and all $u \in S$. Fix $\eta > 0$ and assume $f_t = g_t + \eta tF$ are β_t -strongly convex w.r.t. $\|\cdot\|_t$. For each $t = 1, 2, \ldots, T$ let $\|\cdot\|_{t,*}$ be the dual norm of $\|\cdot\|_t$ is run on the input sequence $z_t = -\eta \ell'_t$ for some $\ell'_t \in \partial \ell_t(w_t)$, then

$$\sum_{t=1}^{T} \left(\ell_t \left(w_t \right) + F\left(w_t \right) \right) - \sum_{t=1}^{T} \left(\ell_t(u) + F(u) \right) \le \frac{g_T(u)}{\eta} + \eta \sum_{t=1}^{T} \frac{\|\ell_t'\|_{t,*}^2}{2\beta_t}$$
(5)
for all $u \in S$.

Corollary 1 (continued)

Moreover, if $f_t = g\sqrt{t} + \eta tF$ where $g: S \to \mathbb{R}$ is β -strongly convex w.r.t. $\|\cdot\|$, then

$$\sum_{t=1}^{T} \left(\ell_t \left(w_t \right) + F \left(w_t \right) \right) - \sum_{t=1}^{T} \left(\ell_t (u) + F(u) \right) \le \sqrt{T} \left(\frac{g(u)}{\eta} + \frac{\eta}{\beta} \max_{t \le T} \left\| \ell_t' \right\|_*^2 \right)$$
(6)

for all $u \in S$.

Finally, if $f_t = tF,$ where F is β -strongly convex w.r.t. $\|\cdot\|$, then

$$\sum_{t=1}^{T} \left(\ell_t \left(w_t \right) + F \left(w_t \right) \right) - \sum_{t=1}^{T} \left(\ell_t (u) + F(u) \right) \le \max_{t \le T} \left\| \ell'_t \right\|_*^2 \frac{(1 + \ln T)}{2\beta}$$
(7)

for all $u \in S$.

Proof.

By convexity, $\ell_t(w_t) - \ell_t(u) \leq \frac{1}{\eta} \langle z_t, u - w_t \rangle$. Using Lemma 1 we have,

$$\sum_{t=1}^{T} \left\langle z_t, u - w_t \right\rangle \leq g_T(u) + \eta TF(u) + \eta^2 \sum_{t=1}^{T} \frac{\|\ell_t'\|_{t,*}^2}{2\beta_t} + \eta \sum_{t=1}^{T} \left((t-1)F(w_t) - tF(w_t) \right)$$

where we used the fact that the terms $g_{t-1}(w_t) - g_t(w_t)$ are nonpositive as per our assumption. Reordering terms we obtain (5).

In order to obtain (6) it is sufficient to note that f_t is $\beta\sqrt{t}$ -strongly convex and the inequality $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2\sqrt{T}$ concludes the proof. Finally, bound (7) is proven by observing that $f_t = tF$ is βt -strongly convex and the

inequality $\sum_{t=1}^{T} \frac{1}{t} \leq 1 + \ln T$ concludes the proof.

・ロト ・西ト ・ヨト ・ヨー うへぐ

Online regression with square loss

We apply Lemma 1 to recover known regret bounds for online regression with the square loss.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- For simplicity, we set $\mathbb{X} = \mathbb{R}^d$ and let the inner product $\langle u, x \rangle = u^\top x$
- ▶ We also set $\ell_t(u) = \frac{1}{2} (y_t u^\top x_t)^2$ for examples $(x_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$

Online regression with square loss

 Specialize OMD to the Vovk–Azoury–Warmuth(VAW) algorithm for online regression

VAW algorithm predicts with, at each time step t,

$$w_{t} = \underset{w}{\operatorname{argmin}} \frac{a}{2} ||w||^{2} + \frac{1}{2} \sum_{s=1}^{t-1} (y_{s} - w^{\top} x_{s})^{2} + \frac{1}{2} (w^{\top} x_{t})^{2}$$

$$= \underset{w}{\operatorname{argmin}} \frac{1}{2} w^{\top} (al + \sum_{i=1}^{t} x_{s} x_{s}^{\top}) w - \sum_{s=1}^{t-1} y_{s} w^{\top} x_{s}$$

$$= (al + \sum_{s=1}^{t} x_{s} x_{s}^{\top})^{-1} \sum_{i=1}^{t-1} y_{s} x_{s}$$

Now, by letting $A_0 = aI_d$, $A_t = A_{t-1} + x_t x_t^{\top}$ for $t \ge 1$, and $z_s = y_s x_s$, we obtain the OMD update $w_t = A_t^{-1}\theta_t = \nabla f_t^*(\theta_t)$, where $f_t(u) = \frac{1}{2}u^{\top}A_tu$ and $f_t^*(\theta) = \frac{1}{2}\theta^{\top}A_t^{-1}\theta$.

Note) z_t is not equal to the negative gradient of the square loss.

< □ ▶ < 큔 ▶ < 글 ▶ < 글 ▶ 글 ∽ < < 13/25

Online regression with square loss

• The regret bound of this algorithm is recovered from Lemma 1 by noting that f_t is 1-strongly convex w.r.t. the norm $\|u\|_t = \sqrt{u^\top A_t u}$. $\|u\|_{t,*} = \sqrt{u^\top A_t^{-1} u}$.

Hence, the regret bound is

Y

$$\begin{split} \mathcal{R}_{T}(u) &= \frac{1}{2} \sum_{t=1}^{T} \left(y_{t} - w_{t}^{\top} x_{t} \right)^{2} - \frac{1}{2} \sum_{t=1}^{T} \left(y_{t} - u^{\top} x_{t} \right)^{2} \\ &= \sum_{t=1}^{T} \left(y_{t} u^{\top} x_{t} - y_{t} w_{t}^{\top} x_{t} \right) - f_{T}(u) + \frac{a}{2} \|u\|^{2} + \frac{1}{2} \sum_{t=1}^{T} \left(w_{t}^{\top} x_{t} \right)^{2} \\ &\leq f_{T}(u) + \sum_{t=1}^{T} \left(\frac{y_{t}^{2} \|x_{t}\|_{t,*}^{2}}{2} + f_{t}^{*}(\theta_{t}) - f_{t-1}^{*}(\theta_{t}) \right) - f_{T}(u) + \frac{a}{2} \|u\|^{2} \\ &+ \frac{1}{2} \sum_{t=1}^{T} \left(w_{t}^{\top} x_{t} \right)^{2} \\ &\leq \frac{a}{2} \|u\|^{2} + \frac{Y^{2}}{2} \sum_{t=1}^{T} x_{t}^{\top} A_{t}^{-1} x_{t} \\ \text{since } f_{t}^{*}(\theta_{t}) - f_{t-1}^{*}(\theta_{t}) \leq f_{t-1}(w_{t}) - f_{t}(w_{t}) = -\frac{1}{2} \left(w_{t}^{\top} x_{t} \right)^{2}, \text{ and where} \\ Y &= \max_{t} |y_{t}|. \end{split}$$

ション ふゆ アメリア メリア しょうくしゃ 14/25

- We introduce two new scale invariant algorithms for online linear regression with an arbitrary convex and Lipschitz loss function.
- ▶ Let $X = \mathbb{R}^d$ and let the inner product $\langle u, x \rangle$ be the standard dot product $u^\top x$

We assume

- For loss $\ell_t(w) = \ell(w^\top x_t, y_t)$, ℓ is *L*-Lipschitz for each y_t and convex.
- OMD is run with $z_t = -\eta \ell'_t$ where, as usual, $\ell'_t \in \partial \ell_t$ (w_t).
- In the rest of this section, the following notation is used:

$$b_{t,i} = \max_{s=1,...,t} |x_{s,i}|, m_t = \max_{s=1,...,t} ||x_s||_0, p_t = 2 \ln m_t$$
, and

$$\beta_{t} = \sqrt{eL^{2}(p_{t}-1) + \sum_{s=1}^{t-1}(p_{s}-1)\left(\sum_{i=1}^{d}\left(\frac{\left|\ell_{s,i}'\right|}{b_{s,i}}\right)^{p_{s}}\right)^{2/p_{s}}}$$

The time-varying regularizers we consider are defined as follows,

$$f_t(u) = \frac{\beta_t}{2} \left(\sum_{i=1}^d \left(|u_i| \, b_{t,i} \right)^{q_t} \right)^{2/q_t} \text{ for } q_t = \frac{p_t}{p_t - 1} \tag{8}$$

$$f_t(u) = \frac{\sqrt{d}}{2} \left(\sum_{i=1}^d \left(|u_i| \, b_{t,i} \right)^2 \sqrt{L^2 + \sum_{s=1}^{t-1} \left(\frac{\ell'_{s,i}}{b_{s,i}} \right)^2} \right) \tag{9}$$

OMD update :

For regularizers of type (8) we have

$$(\nabla f_t^*(\theta))_j = \frac{1}{\beta_t \left(p_t - 1\right)} \left(\sum_{i=1}^d \left(\frac{|\theta_i|}{b_{t,i}}\right)^{p_t}\right)^{2/p_i - 1} \frac{|\theta_j|^{p_t - 1}}{b_{t,j}^{p_t}} \operatorname{sign}\left(\theta_j\right)$$

For regularizers of type (9) we have

$$(
abla f_t^*(heta))_j = rac{ heta_j}{b_{t,j}^2 \sqrt{d} \sqrt{L^2 + \sum_{s=1}^{t-1} \left(rac{ heta_{s,j}'}{ heta_{s,j}}
ight)^2}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Computation : using the fact that if g(w) = af(w), then $g^*(\theta) = af^*\left(\frac{\theta}{a}\right)$, and Lemma 2 in the appendix.
- **Note**) $\boldsymbol{w}_t^{\top} \boldsymbol{x}_t$ is invariant to the rescaling of individual features.

We prove the following regret bounds.

Theorem 1

If OMD is run using regularizers of type (8), then for any $u \in \mathbb{R}^d$

$$R_{T}(u) \leq L\sqrt{e(T+1)\left(2\ln m_{T}-1\right)}\left(\frac{1}{2\eta}\left(\sum_{i=1}^{d}|u_{i}| b_{T,i}\right)^{2}+\eta\right)$$

If OMD is run using regularizers of type (9), then for any $u \in \mathbb{R}^d$

$$R_{T}(u) \leq L\sqrt{d(T+1)}\left(\frac{1}{2\eta}\sum_{i=1}^{d}\left(u_{i}b_{T,i}\right)^{2}+\eta\right).$$

Note) both bounds are invariant with respect to arbitrary scaling of individual coordinates of the data points x_t : if the *i* th feature is rescaled x_{t,i} → cx_{t,i} for all *t*, then a corresponding rescaling u_i → u_i/c, leaves the bounds unchanged.

Proof.

For the first algorithm, note that $m_t^{2/p_t} = e$, and setting $q_t = \left(1 - \frac{1}{p_t}\right)^{-1}$, we have $q_t (1 - p_t) = -p_t$. Further note that $f_t^* (\theta_t) - f_{t-1}^* (\theta_t) \le f_{t-1} (w_t) - f_t (w_t) \le 0$, where $f_{t-1} \le f_t$ because q_t is decreasing, $b_{t,i}$ is increasing, and β_t is also increasing. Hence, using the convexity of ℓ_t and Lemma 1, we may write

$$\begin{aligned} \mathcal{R}_{T}(\boldsymbol{u}) &\leq \sum_{t=1}^{T} \left(\ell_{t}' \right)^{\top} \left(\boldsymbol{w}_{t} - \boldsymbol{u} \right) \\ &\leq \frac{\beta_{T}}{2\eta} \left(\sum_{i=1}^{d} \left(|u_{i}| \, \boldsymbol{b}_{T,i} \right)^{q_{T}} \right)^{2/q_{T}} + \eta \sum_{t=1}^{T} \frac{1}{2\beta_{t} \left(q_{t} - 1 \right)} \left(\sum_{i=1}^{d} \frac{\left| \ell_{t,i}' \right|^{p_{t}}}{b_{t,i}^{p_{t}}} \right)^{2/p_{t}} \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ

For the rest of the proof, reference the paper.

- We show that mistake bound of special case of online convex optimization
- Let X be any finite-dimensional inner product space.
- ▶ $(x_t, y_t) \in \mathbb{X} \times \{-1, +1\}$, let $\ell_t(w)$ be hinge loss $[1 y_t \langle w, x_t \rangle]_+$
 - It is easy to verify that the hinge loss satisfies :

If $\ell_t(w) > 0$ then $\ell_t(u) \ge 1 + \langle u, \ell'_t \rangle$ for all $u, w \in \mathbb{R}^d$ with $\ell'_t \in \partial \ell_t(w)$

ション ふゆ アメリア メリア しょうくしゃ

(this is used for the proof of Lemma 3)

Note that when ℓ_t(w) > 0, ∂ℓ_t(w) is the singleton {∇ℓ_t(w)}

- Set $z_t = -\eta_t \ell'_t$ if $\ell_t(w_t) > 0$, and $z_t = 0$ otherwise.
- Made a prediction mistake is defined by the condition y_tw_t[⊤]x_t ≤ 0 or, equivalently, by ℓ_t (w_t) ≥ 1
 - ▶ M : the subset of steps t such that $y_t w_t^\top x_t \leq 0$ and by M its cardinality
 - ▶ \mathcal{U} : the set of margin error steps; that is, steps *t* where $y_t w_t^\top x_t > 0$ and $\ell_t (w_t) > 0$ and we use *U* to denote the cardinality of \mathcal{U}

Let
$$L(u) = \sum_{t=1}^{T} [1 - y_t \langle u, x_t \rangle]_+$$
 for $u \in \mathbb{X}$.

Corollary 2

Assume OMD is run with $f_t = f$, where f has domain \mathbb{X} , is β -strongly convex with respect to the norm $\|\cdot\|$, and satisfies $f(\lambda u) \leq \lambda^2 f(u)$ for all $\lambda \in \mathbb{R}$ and all $u \in \mathbb{X}$. Further assume the input sequence is $z_t = \eta_t y_t x_t$ for some $0 \leq \eta_t \leq 1$ such that $\eta_t = 1$ whenever $y_t \langle w_t, x_t \rangle \leq 0$. Then, for all $T \geq 1$

$$M \leq \underset{u \in \mathbb{X}}{\operatorname{argmin}} L(u) + D + \frac{2}{\beta} f(u) X_{T}^{2} + X_{T} \sqrt{\frac{2}{\beta}} f(u) L(u)$$

where $M = |M|, X_t = \max_{i=1,...,t} ||x_i||_*$ and

$$D = \sum_{t \in \mathcal{U}} \eta_t \left(\frac{\eta_t \left\| \boldsymbol{x}_t \right\|_*^2 + 2\beta y_t \left\langle \boldsymbol{w}_t, \boldsymbol{x}_t \right\rangle}{X_t^2} - 2 \right)$$

Proof.

Fix any $u \in X$. Using the second bound of Lemma 3 in the "Appendix", with the assumption $\eta_t = 1$ when $t \in \mathcal{M}$, we get

$$\begin{split} M &\leq L(u) + \sqrt{2f(u)} \sqrt{\sum_{t \in \mathcal{M}} \frac{\|\mathbf{x}_t\|_*^2}{\beta}} + \sum_{t \in \mathcal{U}} \left(\frac{\eta_t^2}{\beta} \|\mathbf{x}_t\|_*^2 + 2\eta_t \mathbf{y}_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle \right)} - \sum_{t \in \mathcal{U}} \eta_t \\ &\leq L(u) + X_T \sqrt{\frac{2}{\beta} f(u)} \sqrt{M + \sum_{t \in \mathcal{U}} \frac{\eta_t^2 \|\mathbf{x}_t\|_*^2 + 2\beta\eta_t \mathbf{y}_t \langle \mathbf{w}_t, \mathbf{x}_t \rangle}{X_t^2}} - \sum_{t \in \mathcal{U}} \eta_t \end{split}$$

where we have used the fact that $X_t \leq X_T$ for all $t = 1, \ldots, T$. Solving for M we get

$$M \leq L(u) + \frac{1}{\beta}f(u)X_T^2 + X_T \sqrt{\frac{2}{\beta}}f(u) \sqrt{\frac{1}{2\beta}X_T^2}f(u) + L(u) + D'} - \sum_{t \in \mathcal{U}} \eta_t$$

with $\frac{1}{2\beta}X_T^2f(u) + L(u) + D' \geq 0$, and $D' = \sum_{t \in \mathcal{U}} \left(\frac{\eta_t^2 \|x_t\|_*^2 + 2\beta\eta_t y_t \langle w_t, x_t \rangle}{X_t^2} - \eta_t\right)$.
For the rest of proof, see the paper.

Appendix

Given $(a_1, \ldots, a_d) \in \mathbb{R}_+$ and $q \in (1, 2]$, define the regularization function by

$$f(w) = rac{1}{2(q-1)} \left(\sum_{i=1}^{d} |w_i|^q a_i \right)^{2/q}$$

Lemma 2

The Fenchel conjugate of f is

$$f^*(heta) = rac{1}{2(p-1)} \left(\sum_{i=1}^d | heta_i|^p \, a_i^{1-p}
ight)^{2/p} \, \, {\it for} \, p = rac{q}{q-1}$$

Moreover, the function f(w) is 1 -strongly convex with respect to the norm

$$\left(\sum_{i=1}^d |x_i|^q a_i\right)^{1/q}$$

whose dual norm is defined by

Appendix

Lemma 3

Assume OMD is run with functions f_1, f_2, \ldots, f_T defined on \mathbb{X} and such that each f_t is β_t strongly convex with respect to the norm $\|\cdot\|_t$ and $f_t(\lambda u) \leq \lambda^2 f_t(u)$ for all $\lambda \in \mathbb{R}$ and all $u \in S$. For each $t = 1, 2, \ldots, T$ let $\|_{t,*}$ be the dual norm of $\|\cdot\|_t$. Assume further the input sequence is $z_t = -\eta_t \ell'_t$ for some $\eta_t > 0$, where $\ell'_t \in \partial \ell_t(w_t), \ell_t(w_t) = 0$ implies $\ell'_t = \mathbf{0}$, and $\ell_t = \ell(\langle\cdot, \mathbf{x}_t\rangle, y_t)$ satisfies (20). Then, for all $T \geq 1$

$$\sum_{t \in \mathcal{M} \cup \mathcal{U}} \eta_t \leq L_{\eta} + \lambda f_T(u) + \frac{1}{\lambda} \left(B + \sum_{t \in \mathcal{M} \cup \mathcal{U}} \left(\frac{\eta_t^2}{2\beta_t} \left\| \ell_t' \right\|_{t,*}^2 - \eta_t \left\langle w_t, \ell_t' \right\rangle \right) \right)$$

for any $u \in S$ and any $\lambda > 0$, where

$$L_{\eta} = \sum_{t \in \mathcal{M} \cup \mathcal{U}} \eta_t \ell_t(u) \text{ and } B = \sum_{t=1}^T \left(f_t^* \left(\theta_t \right) - f_{t-1}^* \left(\theta_t \right) \right)$$

In particular, choosing the optimal λ , we obtain

$$\sum_{t \in \mathcal{M} \cup \mathcal{U}} \eta_t \leq L_{\eta} + 2\sqrt{f_T(u)} \sqrt{\left[B + \sum_{t \in \mathcal{M} \cup \mathcal{U}} \left(\frac{\eta_t^2}{2\beta_t} \|\ell_t'\|_{t,*}^2 - \eta_t \langle w_t, \ell_t' \rangle\right)\right]_+}$$

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 うらぐ