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Online convex optimization

I X be any finite-dimensional linear space equipped with inner product 〈·, ·〉.

eg) X = Rd where 〈·, ·〉 is the vector dot product

I At each step t = 1, 2, . . . the algorithm chooses wt ∈ S ⊆ X and then

observes a convex loss function `t : S → R, the goal is to control the regret

RT (u) =
T∑

t=1

`t (wt)−
T∑

t=1

`t(u) (1)

for all u ∈ S .

I In these settings for a fixed but unknown example (xt , yt) ∈ X×R the loss

suffered at step t is defined as `t (w t) = ` (〈w t , x t〉 , yt).
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Further notation and definitions

I We consider functions f that are closed and convex with domain S ⊆ X.

I Its Fenchel conjugate f ∗ : X→ R is defined by

f ∗(u) = supv∈S(〈v , u〉 − f (v))

I The domain of f ∗ is always X.
I f ∗∗ = f

I ‖u‖ : A generic norm of a vector u ∈ X.
I dual ‖ · ‖∗ is the norm defined by ‖v‖∗ = supu{〈u, v〉 : ‖u‖ ≤ 1}.
I The Fenchel-Young inequality states that f (u) + f ∗(v) ≥ 〈u, v〉 for all v , u

I A vector x is a subgradient of a convex function f at v
if f (u)− f (v) ≥ 〈u − v , x〉 for any u in the domain of f .

I ∂f (v) : the set of all the subgradients of f at v
I ∇f (v) : the gradient of f at v
I For all x ∈ ∂f (v) we have that f (v) + f ∗(x) = 〈v , x〉
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Further notation and definitions

I A function f is β -strongly convex with respect to a norm ‖ · ‖ if for any

u, v in its domain, and any x ∈ ∂f (u)

f (v) ≥ f (u) + 〈x , v − u〉+ β

2
‖u − v‖2

I The Fenchel conjugate f ∗ of a β -strongly convex function f is everywhere

differentiable and 1
β
-strongly smooth. This means that, for all u, v ∈ X ,

f ∗(v) ≤ f ∗(u) + 〈∇f ∗(u), v − u〉+ 1
2β
‖u − v‖2∗

I A further property of strongly convex functions f : S → R is the following:

I For all u ∈ X ,

∇f ∗(u) = argmax
v∈S

(〈v , u〉 − f (v)) (2)

I This implies

f (∇f ∗(u)) + f ∗(u) = 〈∇f ∗(u), u〉 (3)
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Online mirror descent

I The standard OMD algorithm sets

I w t = ∇f ∗ (θt) where f is a strongly convex regularizer
I θt is updated using subgradient descent: θt+1 = θt − η`′t for η > 0 and

`′t ∈ ∂`t (wt)

I We genaralize OMD in two ways :

I We allow f to change over time
I We do not necessarily use the subgradient of the loss to update θt

5/25



Online mirror descent

Lemma 1

Assume OMD is run with functions f1, f2, . . . , fT defined on a common convex

domain S ⊆ X and such that each ft is βt -strongly convex with respect to the

norm ‖ · ‖t . Let ‖ · ‖t,∗ be the dual norm of ‖ · ‖t , for t = 1, 2, . . . ,T . Then, for

any u ∈ S ,

T∑
t=1

〈zt , u − wt〉 ≤ fT (u) +
T∑

t=1

(
‖zt‖2t,∗
2βt

+ f ∗t (θt)− f ∗t−1 (θt)

)

where we set f ∗0 (0) = 0. Moreover, for all t ≥ 1, we have

f ∗t (θt)− f ∗t−1 (θt) ≤ ft−1 (wt)− ft (w t) (4)
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Online mirror descent

Proof.
Let ∆t = f ∗t (θt+1)− f ∗t−1 (θt) . Then

∑T
t=1 ∆t = f ∗T (θT+1)− f ∗0 (θ1) = f ∗T (θT+1) .

Since f ∗t are 1
βt

-strongly smooth with respect to ‖ · ‖t,∗, and θt+1 = θt + zt ,

∆t = f ∗t (θt+1)− f ∗t (θt) + f ∗t (θt)− f ∗t−1 (θt)

≤ f ∗t (θt)− f ∗t−1 (θt) + 〈∇f ∗t (θt) , zt〉+
1
2βt
‖zt‖2t,∗

= f ∗t (θt)− f ∗t−1 (θt) + 〈w t , zt〉+
1
2βt
‖zt‖2t,∗

The Fenchel-Young inequality implies

T∑
t=1

∆t = f ∗T (θT+1) ≥ 〈u, θT+1〉 − fT (u) =
T∑

t=1

〈u, zt〉 − fT (u)

Combining the upper and lower bound on ∆t and summing over t we get the first

statement.
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Online mirror descent

Proof.
(continued) We now prove the second statement. Recalling again wt = ∇f ∗t (θt), we

have that (3) implies

f ∗t (θt) = 〈wt , θt〉 − ft (wt) .

On the other hand, the Fenchel-Young inequality implies that

−f ∗t−1 (θt) ≤ ft−1 (wt)− 〈wt , θt〉 .

Combining the two we get f ∗t (θt)− f ∗t−1 (θt) ≤ ft−1 (wt)− ft (wt).
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Online mirror descent

Regret bounds for OMD applied to three different classes of time-varying

regularizers. While the composite setting (`t(·) + F (·)) is considered more difficult

than the standard one, here we show that this setting can be efficiently solved using

OMD with a specific choice of the timevarying regularizer.

Corollary 1

Let S a convex set, F : S → R be a convex function, and let g1, g2, . . . , gT be

a sequence of convex functions gt : S → R such that gt(u) ≤ gt+1(u) for all

t = 1, 2, . . . ,T and all u ∈ S . Fix η > 0 and assume ft = gt + ηtF are βt

-strongly convex w.r.t. ‖ · ‖t . For each t = 1, 2, . . . ,T let ‖ · ‖t,∗ be the dual

norm of ‖ · ‖t is run on the input sequence zt = −η`′t for some `′t ∈ ∂`t (wt) ,

then
T∑

t=1

(`t (wt) + F (wt))−
T∑

t=1

(`t(u) + F (u)) ≤ gT (u)

η
+ η

T∑
t=1

‖`′t‖
2
t,∗

2βt
(5)

for all u ∈ S .
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Online mirror descent

Corollary 1 (continued)

Moreover, if ft = g
√
t + ηtF where g : S → R is β -strongly convex w.r.t. ‖ · ‖

, then

T∑
t=1

(`t (wt) + F (wt))−
T∑

t=1

(`t(u) + F (u)) ≤
√
T

(
g(u)

η
+
η

β
max
t≤T

∥∥`′t∥∥2
∗

)
(6)

for all u ∈ S .

Finally, if ft = tF , where F is β -strongly convex w.r.t. ‖ · ‖ , then

T∑
t=1

(`t (wt) + F (wt))−
T∑

t=1

(`t(u) + F (u)) ≤ max
t≤T

∥∥`′t∥∥2
∗
(1+ lnT )

2β
(7)

for all u ∈ S .
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Online mirror descent

Proof.
By convexity, `t (wt)− `t(u) ≤ 1

η
〈zt , u − wt〉 . Using Lemma 1 we have,

T∑
t=1

〈zt , u − wt〉 ≤ gT (u) + ηTF (u) + η2
T∑

t=1

‖`′t‖
2
t,∗

2βt
+ η

T∑
t=1

((t − 1)F (wt)− tF (wt))

where we used the fact that the terms gt−1 (wt)− gt (wt) are nonpositive as per our

assumption. Reordering terms we obtain (5).

In order to obtain (6) it is sufficient to note that ft is β
√
t -strongly convex and the

inequality
∑T

t=1
1√
t
≤ 2
√
T concludes the proof.

Finally, bound (7) is proven by observing that ft = tF is βt -strongly convex and the

inequality
∑T

t=1
1
t
≤ 1 + lnT concludes the proof.
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Online regression with square loss

I We apply Lemma 1 to recover known regret bounds for online regression

with the square loss.

I For simplicity, we set X = Rd and let the inner product 〈u, x〉 = u>x

I We also set `t(u) = 1
2

(
yt − u>xt

)2 for examples (xt , yt) ∈ Rd × R
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Online regression with square loss

I Specialize OMD to the Vovk–Azoury–Warmuth(VAW) algorithm for online

regression

I VAW algorithm predicts with, at each time step t,

wt = argmin
w

a

2
‖w‖2 + 1

2

t−1∑
s=1

(
ys − w>xs

)2
+

1
2

(
w>xt

)2

= argmin
w

1
2
w>

(
aI +

t∑
i=1

xsx
>
s

)
w −

t−1∑
s=1

ysw
>xs

=

(
aI +

t∑
s=1

xsx
>
s

)−1 t−1∑
i=1

ysxs

I Now, by letting A0 = aId ,At = At−1 + xtx
>
t for t ≥ 1, and zs = ysxs , we

obtain the OMD update wt = A−1
t θt = ∇f ∗t (θt) , where ft(u) =

1
2u
>Atu

and f ∗t (θ) =
1
2θ
>A−1

t θ.

I Note) zt is not equal to the negative gradient of the square loss.
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Online regression with square loss

I The regret bound of this algorithm is recovered from Lemma 1 by noting that ft

is 1-strongly convex w.r.t. the norm ‖u‖t =
√

u>Atu. ‖u‖t,∗ =
√

u>A−1
t u.

I Hence, the regret bound is

RT (u) =
1
2

T∑
t=1

(
yt − w>t xt

)2
−

1
2

T∑
t=1

(
yt − u>xt

)2

=
T∑

t=1

(
ytu
>xt − ytw

>
t xt

)
− fT (u) +

a

2
‖u‖2 +

1
2

T∑
t=1

(
w>t xt

)2

≤ fT (u) +
T∑

t=1

(
y2
t ‖xt‖

2
t,∗

2
+ f ∗t (θt)− f ∗t−1 (θt)

)
− fT (u) +

a

2
‖u‖2

+
1
2

T∑
t=1

(
w>t xt

)2

≤
a

2
‖u‖2 +

Y 2

2

T∑
t=1

x>t A−1
t xt

since f ∗t (θt)− f ∗t−1 (θt) ≤ ft−1 (wt)− ft (wt) = − 1
2

(
w>t xt

)2, and where

Y = maxt |yt |.
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Scale-invariant algorithms

I We introduce two new scale invariant algorithms for online linear

regression with an arbitrary convex and Lipschitz loss function.

I Let X = Rd and let the inner product 〈u, x〉 be the standard dot product

u>x
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Scale-invariant algorithms

I We assume

I For loss `t(w) = `
(
w>xt , yt

)
, ` is L -Lipschitz for each yt and convex.

I OMD is run with zt = −η`′t where, as usual, `′t ∈ ∂`t (wt).
I In the rest of this section, the following notation is used:

bt,i = maxs=1,...,t
∣∣xs,i ∣∣ ,mt = maxs=1,...,t ‖xs‖0 , pt = 2 lnmt , and

βt =

√√√√√√eL2 (pt − 1) +

t−1∑
s=1

(ps − 1)

 d∑
i=1


∣∣∣`′s,i ∣∣∣
bs,i

ps2/ps

I The time-varying regularizers we consider are defined as follows,

ft(u) =
βt
2

(
d∑

i=1

(|ui | bt,i )qt
)2/qt

for qt =
pt

pt − 1
(8)

ft(u) =

√
d

2

 d∑
i=1

(|ui | bt,i )2
√√√√L2 +

t−1∑
s=1

(
`′s,i
bs,i

)2
 (9)
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Scale-invariant algorithms

I OMD update :

I For regularizers of type (8) we have

(∇f ∗t (θ))j =
1

βt (pt − 1)

(
d∑

i=1

(
|θi |
bt,i

)pt
)2/pi−1 ∣∣θj ∣∣pt−1

bptt,j
sign

(
θj
)

I For regularizers of type (9) we have

(∇f ∗t (θ))j =
θj

b2
t,j

√
d

√
L2 +

∑t−1
s=1

(
`′s,j
bs,j

)2

I Computation : using the fact that if g(w) = af (w), then

g∗(θ) = af ∗
(
θ
a

)
, and Lemma 2 in the appendix.

I Note) w>t x t is invariant to the rescaling of individual features.
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Scale-invariant algorithms

We prove the following regret bounds.

Theorem 1
If OMD is run using regularizers of type (8), then for any u ∈ Rd

RT (u) ≤ L
√

e(T + 1) (2 lnmT − 1)

 1
2η

(
d∑

i=1

|ui | bT ,i

)2

+ η


If OMD is run using regularizers of type (9), then for any u ∈ Rd

RT (u) ≤ L
√

d(T + 1)

(
1
2η

d∑
i=1

(
uibT ,i

)2
+ η

)
.

I Note) both bounds are invariant with respect to arbitrary scaling of individual

coordinates of the data points xt : if the i th feature is rescaled xt,i → cxt,i for

all t, then a corresponding rescaling ui → ui/c, leaves the bounds unchanged.
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Scale-invariant algorithms

Proof.
For the first algorithm, note that m2/pt

t = e, and setting qt =
(
1− 1

pt

)−1
, we have

qt (1− pt) = −pt . Further note that f ∗t (θt)− f ∗t−1 (θt) ≤ ft−1 (wt)− ft (wt) ≤ 0,

where ft−1 ≤ ft because qt is decreasing, bt,i is increasing, and βt is also increasing.

Hence, using the convexity of `t and Lemma 1, we may write

RT (u) ≤
T∑

t=1

(
`′t
)>

(w t − u)

≤
βT

2η

(
d∑

i=1

(
|ui | bT ,i

)qT)2/qT

+ η
T∑

t=1

1
2βt (qt − 1)

 d∑
i=1

∣∣∣`′t,i ∣∣∣pt
bptt,i

2/pt

For the rest of the proof, reference the paper.
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Binary classification

I We show that mistake bound of special case of online convex optimization

I Let X be any finite-dimensional inner product space.

I (xt , yt) ∈ X× {−1,+1}, let `t(w) be hinge loss [1− yt 〈w , xt〉]+
I It is easy to verify that the hinge loss satisfies :

If `t(w) > 0 then `t(u) ≥ 1 +
〈
u, `′t

〉
for all u,w ∈ Rd with `′t ∈ ∂`t(w)

(this is used for the proof of Lemma 3)
I Note that when `t(w) > 0, ∂`t(w) is the singleton {∇`t(w)}
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Binary classification

I Set zt = −ηt`′t if `t (wt) > 0, and zt = 0 otherwise.

I Made a prediction mistake is defined by the condition ytw
>
t xt ≤ 0 or,

equivalently, by `t (wt) ≥ 1

I M : the subset of steps t such that ytw>t xt ≤ 0 and by M its cardinality
I U : the set of margin error steps; that is, steps t where ytw>t xt > 0 and

`t (wt) > 0 and we use U to denote the cardinality of U

21/25



Binary classification

Let L(u) =
∑T

t=1 [1− yt 〈u, xt〉]+ for u ∈ X.

Corollary 2

Assume OMD is run with ft = f , where f has domain X, is β -strongly convex

with respect to the norm ‖ · ‖, and satisfies f (λu) ≤ λ2f (u) for all λ ∈ R and

all u ∈ X. Further assume the input sequence is zt = ηtytxt for some

0 ≤ ηt ≤ 1 such that ηt = 1 whenever yt 〈wt , xt〉 ≤ 0. Then, for all T ≥ 1

M ≤ argmin
u∈X

L(u) + D +
2
β
f (u)X 2

T + XT

√
2
β
f (u)L(u)

where M = |M|,Xt = maxi=1,...,t ‖xi‖∗ and

D =
∑
t∈U

ηt

(
ηt ‖x t‖2∗ + 2βyt 〈wt , xt〉

X 2
t

− 2

)
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Binary classification

Proof.
Fix any u ∈ X. Using the second bound of Lemma 3 in the "Appendix", with the

assumption ηt = 1 when t ∈M, we get

M ≤ L(u) +
√

2f (u)

√√√√∑
t∈M

‖xt‖2∗
β

+
∑
t∈U

(
η2
t

β
‖xt‖2∗ + 2ηtyt 〈wt , xt〉

)
−
∑
t∈U

ηt

≤ L(u) + XT

√
2
β
f (u)

√√√√M +
∑
t∈U

η2
t ‖xt‖

2
∗ + 2βηtyt 〈wt , xt〉

X 2
t

−
∑
t∈U

ηt

where we have used the fact that Xt ≤ XT for all t = 1, . . . ,T . Solving for M we get

M ≤ L(u) +
1
β
f (u)X 2

T + XT

√
2
β
f (u)

√
1
2β

X 2
T f (u) + L(u) + D′ −

∑
t∈U

ηt

with 1
2βX

2
T f (u) + L(u) + D′ ≥ 0, and D′ =

∑
t∈U

(
η2
t ‖xt‖

2
∗+2βηtyt〈wt ,xt〉

X2
t

− ηt
)
.

For the rest of proof, see the paper.
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Appendix

Given (a1, . . . , ad) ∈ R+ and q ∈ (1, 2], define the regularization function by

f (w) =
1

2(q − 1)

(
d∑

i=1

|wi |q ai

)2/q

Lemma 2

The Fenchel conjugate of f is

f ∗(θ) =
1

2(p − 1)

(
d∑

i=1

|θi |p a1−p
i

)2/p

for p =
q

q − 1

Moreover, the function f (w) is 1 -strongly convex with respect to the norm(
d∑

i=1

|xi |q ai

)1/q

whose dual norm is defined by(
d∑

i=1

|θi |p a1−p
i

)1/p

.
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Appendix

Lemma 3
Assume OMD is run with functions f1, f2, . . . , fT defined on X and such that each ft is

βt strongly convex with respect to the norm ‖ · ‖t and ft(λu) ≤ λ2ft(u) for all λ ∈ R

and all u ∈ S. For each t = 1, 2, . . . ,T let ‖t,∗ be the dual norm of ‖ · ‖t . Assume

further the input sequence is zt = −ηt`′t for some ηt > 0, where

`′t ∈ ∂`t (wt) , `t (wt) = 0 implies `′t = 0, and `t = ` (〈·, x t〉 , yt) satisfies (20). Then,

for all T ≥ 1

∑
t∈M∪U

ηt ≤ Lη + λfT (u) +
1
λ

B +
∑

t∈M∪U

(
η2
t

2βt

∥∥`′t∥∥2
t,∗ − ηt

〈
wt , `

′
t

〉)
for any u ∈ S and any λ > 0, where

Lη =
∑

t∈M∪U
ηt`t(u) and B =

T∑
t=1

(
f ∗t (θt)− f ∗t−1 (θt)

)
In particular, choosing the optimal λ, we obtain

∑
t∈M∪U

ηt ≤ Lη + 2
√

fT (u)

√√√√√
B +

∑
t∈M∪U

(
η2
t

2βt
‖`′t‖

2
t,∗ − ηt 〈wt , `′t〉

)
+

.

25/25


	Online convex optimization
	Online mirror descent
	Online regression with square loss
	Scale-invariant algorithms
	Binary classification
	Appendix

