Adaptive Bound Optimization for Online Convex Optimization

McMahan, H. B., & Streeter, M. (2010)

arXiv

Presenter: Sarah Kim 2019.05.31

- ► Consider online convex optimization.
- $\mathcal{F} \subseteq \mathbb{R}^n$: closed, bounded, convex feasible set
- On each round t = 1,..., T, pick a point x_t ∈ F.
 For a given convex loss function f_t,

$$\mathsf{Regret} := \sum_{t=1}^T f_t(x_t) - \min_{\mathbf{x} \in \mathcal{F}} \sum_{t=1}^T f_t(\mathbf{x}).$$

▶ Online gradient descent algorithm acheive upper bound of

$$\mathcal{O}(DM\sqrt{T}),$$

where

- ▶ D: the L_2 diameter of \mathcal{F} ;
- ightharpoonup M: a bound on L_2 norms of gradients of the loss functions.
- ▶ This is minimax optimal when \mathcal{F} is a hypersphere, but we will prove that much better algorithms exist when \mathcal{F} is the hypercube.

- ▶ Hence, we introduce additional parameter $\theta_1, \ldots, \theta_T$ that capture more of the problem's structure.
- ▶ We choose θ_t adaptively based on f_1, \ldots, f_{t-1} , for $t = 1, \ldots, T$.
- ▶ Construct functional upper bounds on reget $B_R(\theta_1, ..., \theta_T; f_1, ..., f_T)$.
- ▶ If for all possible $(f_1, ..., f_T)$ we have

$$B_R(\theta_1,\ldots,\theta_T;f_1,\ldots,f_T) \leq \kappa \inf_{\theta_1',\ldots,\theta_T' \in \Theta^T} B_R(\theta_1',\ldots,\theta_T';f_1,\ldots,f_T),$$

then we say the adaptive scheme is κ -competitive for the bound optimization problem.

► FTPRL (Follow the proximally-regularized leader) algorithm:

On round t+1, selects

$$x_{t+1} = \underset{x \in \mathcal{F}}{\operatorname{argmin}} \left(\sum_{\tau=1}^{t} (r_{\tau}(x) + f_{\tau}(x)) \right),$$

where

- \triangleright $x_1 = 0$ (W.L.O.G., we assume $0 \in \mathcal{F}$)
- $ightharpoonup r_t(x)$: regularization function; $f_t(x)$: convex loss function.
- Consider regularization functions of the form

$$r_t(x) = \frac{1}{2} \|Q_t^{\frac{1}{2}}(x - x_t)\|_2^2$$

where Q_t is a positive semidefinite matrix (which is adaptively selected).

Overview

- Notations
 - $\vec{Q_T} = (Q_1, \ldots, Q_T);$
 - $\vec{g_T} = (g_1, \dots, g_T)$, where g_t is a subgradient of f_t at x_t ;
 - $Q_{1:t} = \sum_{\tau=1}^{t} Q_{\tau}$
- ▶ For a convex set \mathcal{F} , define $\mathcal{F}_{\text{sym}} = \{x x' | x, x' \in \mathcal{F}\}.$
- 1. Regret bound:

$$\mathsf{Regret} \leq B_{R}(\vec{Q_T}, \vec{g_T}) := \frac{1}{2} \sum_{t=1}^{T} \max_{\hat{y} \in \mathcal{F}_{\mathsf{sym}}} (\hat{y}^\top Q_t \hat{y}) + \sum_{t=1}^{T} g_t^\top Q_{1:t}^{-1} g_t$$

- 2. We prove competitive ratios w.r.t. B_R for several adaptive schemes for selecting Q_t matrices.
- Find a fundamental connection between the shape of the feasible set and the importance of choosing the regularization matrices adaptively.

Notations and technical background

- Notations
 - \triangleright $\partial f(x)$: the set of subgradients of f evaluated at x
 - ▶ S_{+}^{n} : the set of symm. positive semidefinite $n \times n$ matrices; S_{++}^{n} : the set of symm. positive definite $n \times n$ matrices
 - $ightharpoonup \|\cdot\|$: L_2 norm
- ▶ Since f_t is convex loss function,

$$f_t(x) \geq g_t^{\top}(x-x_t) + f_t(x_t),$$

where $g_t \in \partial f(x_t)$. And the above inequality is tight for $x = x_t$. Hence the update of FTPRL is

$$x_{t+1} = \underset{x \in \mathcal{F}}{\operatorname{argmin}} \left(\frac{1}{2} \sum_{\tau=1}^{t} (x - x_{\tau})^{\top} Q_{\tau}(x - x_{\tau}) + \underline{g}_{1:t} \cdot \mathbf{x} \right)$$
(1)

2. Analysis of FTPRL

▶ In this section, we prove the following bound on the regret of FTPRL for an arbitrary seq. of regularization matrices Q_t .

Theorem 2 Let $\mathcal{F}\subseteq\mathbb{R}^n$ be a closed, bounded convex set with $0\in\mathcal{F}$. Let $Q_1\in S^n_{++}$, and $Q_2,\ldots,Q_T\in S^n_{+}$. Define $r_t(x)=\frac{1}{2}\|Q_t^{\frac{1}{2}}(x-x_t)\|_2^2$, and $A_t=(Q_{1:t})^{\frac{1}{2}}$. Let f_t be a seq. of loss functions with $g_t\in\partial f_t(x_t)$ a sub-gradient of f_t at x_t . Then the FTPRL algorithm with $x_1=0$, and Eq. (1) has a regret bound

Regret
$$\leq r_{1:T}(\mathring{x}) + \sum_{t=1}^{T} \|A_t^{-1} g_t\|^2$$

where $\mathring{x} = \operatorname{argmin}_{x \in \mathcal{F}} f_{1:T}(x)$ is the post-hoc optimal feasible point.

2. Analysis of FTPRL

Proof of Theorem 2

1 First we show that for a seq. of non-negetive functions r_1, \ldots, r_T ,

Regret
$$\leq r_{1:T}(\mathring{x}) + \sum_{t=1}^{T} (f_t(x_t) - f_t(x_{t+1}))$$

(:) Define $f_t(x) = f_t(x) + r_t(x)$ and $\hat{x}_t = \operatorname{argmin}_{x \in \mathcal{F}} f_{1:t}(x)$. Then we have

$$\begin{split} \sum_{t=1}^{T} f_t'(\hat{x}_t) &\leq \min_{x \in \mathcal{F}} f_{1:T}(x) \leq f_{1:T}(\mathring{x}) \\ \Leftrightarrow \sum_{t=1}^{T} f_t(\hat{x}_t) + r_t(\hat{x}_t) \leq r_{1:T}(\mathring{x}) + f_{1:T}(\mathring{x}) \end{split}$$

Since $r_t(\hat{x}_t)$ is non-negative, we have

$$\sum_{t=1}^{T} f_t(x_t) - f_{1:T}(\mathring{x}) \leq r_{1:T}(\mathring{x}) + \sum_{t=1}^{T} (f_t(x_t) - f_t(x_{t+1}))$$

2. Analysis of FTPRL

Proof of Theorem 2 (cont'd)

- 2 We show that $f_t(x_t) f_t(x_{t+1}) \le g_t(x_t x_{t+1}) \stackrel{?}{\le} ||A_t^{-1}g_t||^2$.
 - ▶ (Key idea 1) Let $Q \in S_{++}^n$ and $h \in \mathbb{R}^n$, consider the function

$$f(x) = h^{\top} x + \frac{1}{2} x^{\top} Q x.$$

Let $\mathring{u} = \operatorname{argmin}_{u \in \mathbb{R}^n} f(u)$. Then, letting $A = Q^{\frac{1}{2}}$, we have

$$\underset{x \in \mathcal{F}}{\operatorname{argmin}} f(x) = \underset{x \in \mathcal{F}}{\operatorname{argmin}} \|A(x - \mathring{u})\|.$$

▶ (Key idea 2) Let $v, g \in \mathbb{R}^n$ and let $u_1 = -Q^{-1}v$ and $u_2 = -Q^{-1}(v+g)$. Then letting $x_1 = \operatorname{argmin}_{x \in \mathcal{F}} \|A(x-u_1)\|$ and $x_2 = \operatorname{argmin}_{x \in \mathcal{F}} \|A(x-u_2)\|$,

$$g^{\top}(x_1 - x_2) \leq ||A^{-1}g||^2.$$

3. Specific Adaptive Algorithms and Competitive Ratios

By Thm 2, we have

$$\begin{split} \mathsf{Regret} & \leq r_{1:T}(\mathring{x}) + \sum_{t=1}^{T} \|A_{t}^{-1} g_{t}\|^{2} \\ & \leq \frac{1}{2} \sum_{t=1}^{T} \max_{\mathring{y} \in \mathcal{F}_{\mathsf{Sym}}} (\mathring{y}^{\top} Q_{t} \mathring{y}) + \sum_{t=1}^{T} g_{t}^{\top} Q_{1:t}^{-1} g_{t} =: B_{R}(\vec{Q}_{T}, \vec{g_{T}}) \end{split}$$

- ▶ Best post-hoc bound: $\inf_{\vec{Q_T} \in \mathcal{Q}^T} B_R(\vec{Q}_T, \vec{g_T})$, where $\mathcal{Q} \subseteq S_+^n$
- ▶ Using the fact that Q_1, \ldots, Q_T are positive semidefinite matrices, one can show that the best post-hoc bound can solve an optimization of the form,

$$\inf_{Q \in \mathcal{Q}} \left(\max_{\hat{y} \in \mathcal{F}_{\mathsf{sym}}} \left(\frac{1}{2} \hat{y}^{\top} Q \hat{y} \right) + \sum_{t=1}^{T} g_t^{\top} Q^{-1} g_t \right). \tag{2}$$

3.1. Adaptive coordinate-constant regularization

▶ We derive bounds where Q_t is chosen from the set $Q_{const} := \{\alpha I | \alpha \geq 0\}$.

Corollary 8 Suppose $\mathcal F$ has L_2 diameter D. Then, if we run FTPRL with diagonal matrices s.t.

$$(Q_{1:t})_{ii} = \bar{\alpha}_t = \frac{2\sqrt{G_t}}{D}$$

where $\textit{G}_t = \sum_{ au=1}^t \sum_{i=1}^n \textit{g}_{ au,i}^2,$ then

Regret
$$\leq 2D\sqrt{G_T}$$
.

- ▶ If $||g_t||_2 \le M$, then $G_T \le M^2 T$, and this translates to a bound of $\mathcal{O}(DM\sqrt{T})$.
- ▶ When $\mathcal{F} = \{x | \|x\|_2 \le D/2\}$, this bound is $\sqrt{2}$ -competitive for the bound optimization problem over $\mathcal{Q}_{\text{const}}$.

3.1. Adaptive coordinate-constant regularization

Proof of Corollary 8

- Let the diagonal entries of Q_t all be $\alpha_t = \bar{\alpha}_t \bar{\alpha}_{t-1}$ with $\bar{\alpha}_0$, then $\alpha_{1:t} = \bar{\alpha}_t$. Note $\alpha_t \geq 0$, so this choice is feasible.
- ▶ Left of $B_R(\vec{Q}_T, \vec{g\tau})$: letting \hat{y}_t be an arbitrary seq. of points from \mathcal{F}_{sym} , and noting $\hat{y}_t^{\top} \hat{y}_t \leq D^2$,

$$\frac{1}{2}\sum_{t=1}^T \hat{y}_t^\top Q_t \hat{y}_t = \frac{1}{2}\sum_{t=1}^T \hat{y}_t^\top \hat{y}_t \alpha_t \leq \frac{1}{2}D^2 \sum_{t=1}^T \alpha_t = \frac{1}{2}D^2 \bar{\alpha}_T = D\sqrt{G_T}.$$

▶ Right of $B_R(\vec{Q}_T, \vec{g_T})$:

$$\sum_{t=1}^T g_t^\top Q_{1:t}^{-1} g_t = \sum_{t=1}^T \sum_{i=1}^n \frac{g_{t,i}^2}{\alpha_{1:t}} = \sum_{t=1}^T \frac{D}{2} \frac{\sum_{i=1}^n g_{t,i}^2}{\sqrt{G_t}} \leq D \sqrt{G_T}.$$

3.1. Adaptive coordinate-constant regularization

Proof of Corollary 8 (cont'd)

▶ In order to make a competitive guarantee, prove a lower bound on the post-hoc optimal bound function B_R . When $\mathcal{F} = \{x | \|x\|_2 \le D/2\}$, the best post-hoc bound is

$$\min_{\alpha \ge 0} \left(\frac{1}{2} \alpha D^2 + \frac{1}{\alpha} G_T \right) = D \sqrt{2G_T},$$

so conclude the adaptive algorithm is $\sqrt{2}\text{-competitive}$ for the bound optimization problem.

Define the projection operator,

$$P_{\mathcal{F},A}(u) = \operatorname*{argmin}_{x \in \mathcal{F}} \|A(x-u)\|.$$

Then FTPRL update has an equivaluent form as following:

$$\begin{aligned} x_{t+1} &= \underset{x \in \mathcal{F}}{\operatorname{argmin}}(r_{1:t}(x) + g_{1:t}x) & \text{(Original FTPRL)} \\ \Leftrightarrow & \begin{cases} u_{t+1} &= \underset{u \in \mathbb{R}^n}{\operatorname{argmin}}(r_{1:t}(u) + g_{1:t}u) \\ x_{t+1} &= P_{\mathcal{F}, A_t}(u_{t+1}) \end{cases} & \text{(Unconstrained optimization)} \end{aligned}$$

- To derive a algorithm, first construct a closed-form solution to the unconstrained problem.
- ▶ Since $r_t(u) = \frac{1}{2}(u x_t)^\top Q_t(u x_t)$, we have

$$\frac{\partial r_{1:t}(u)}{\partial u} = Q_{1:t}u - \sum_{\tau=1}^t Q_\tau x_\tau.$$

Because u_{t+1} is the optimum of the uncontrained problem,

$$\frac{\partial r_{1:t}(u)}{\partial u} + g_{1:t}\Big|_{u=u_{t+1}} = 0$$
, hence,

$$u_{t+1} = Q_{1:t}^{-1} \left(\sum_{\tau=1}^{t} Q_{\tau} x_{\tau} - g_{1:t} \right).$$

▶ In this section, set *i*th entry on the diagonal of $Q_{1:t}$ as

$$ar{\lambda}_{t,i} = rac{2}{D_i} \sqrt{\sum_{ au=1}^t g_{ au_{t,i}^2}}.$$

Algorithm 1 FTPRL-Diag

```
Input: feasible set \mathcal{F} \subseteq \times_{i=1}^n [a_i, b_i]
Initialize x_1 = 0 \in \mathcal{F}
(\forall i), G_i = 0, q_i = 0, \lambda_{0,i} = 0, D_i = b_i - a_i
for t = 1 to T do
    Play the point x_t, incur loss f_t(x_t)
    Let q_t \in \partial f_t(x_t)
    for i = 1 to n do
       G_i = G_i + g_{t,i}^2
       \lambda_{t,i} = \frac{2}{D} \sqrt{G_i} - \lambda_{1:t-1,i}
       q_i = q_i + x_{t,i}\lambda_{t,i}
       u_{t+1,i} = (g_{1:t,i} - q_i)/\lambda_{1:t}
    end for
    A_t = \operatorname{diag}(\sqrt{\lambda_{1:t,1}}, \dots, \sqrt{\lambda_{1:t,n}})
    x_{t+1} = \operatorname{Project}_{\mathcal{F}, A_{\bullet}}(u_{t+1})
end for
```

Corollary 9 Let \mathcal{F} be a convex feasible set of width D_i in coordinate i. Then, if we run FTPRL with diagonal matrices s.t.

$$(Q_{1:t})_{ii} = \bar{\lambda}_{t,i} = \frac{2}{D_i} \sqrt{\sum_{\tau=1}^t g_{\tau,i}^2},$$

then

$$\mathsf{Regret} \leq 2 \sum_{i=1}^n D_i \sqrt{\sum_{t=1}^T g_{t,i}^2}.$$

▶ When \mathcal{F} is a hyperrectangle, then this algorithm is $\sqrt{2}$ -competitive with the post-hoc optimal choice of Q_t from the $Q_{\text{diag}} := \{\text{diag}(\lambda_1, \dots, \lambda_n) | \lambda_i > 0\}.$

Example: Practical importance of adaptive regularization

- ▶ Suppose $\mathcal{F} = \left[-\frac{1}{2}, \frac{1}{2}\right]^n$, then the diameter of \mathcal{F} is \sqrt{n} . On each round t, $g_{t,i}$ is 1 w.p. $i^{-\alpha}$ and is 0 o.w., for some $\alpha \in [1,2)$.
- ▶ Then expected regret bound are
 - ▶ GD with a global learning rate: $O(\sqrt{nT})$
 - ▶ FTPRL-Diag (using Cor. 9 with $D_i = 1$ and Jensen's ineq.):

$$\mathbb{E}\left[\sum_{i=1}^n \sqrt{\sum_{t=1}^n g_{t,i}^2}\right] \leq \sum_{i=1}^n \sqrt{\sum_{t=1}^T \mathbb{E}[g_{t,i}^2]} = \sum_{i=1}^n \sqrt{Ti^{-\alpha}} = O(\sqrt{T} \cdot n^{1-\frac{\alpha}{2}})$$

Theorem 10 Let \mathcal{F} be an aribrary feasible set, bounded by a hyperrectangle H^{out} of width W_i in coordinate i; let H^{in} be an hyperrectangle contained by \mathcal{F} of width $w_i > 0$ in coordinate i, i.e.,

$$\textit{H}^{in} \subseteq \mathcal{F} \subseteq \textit{H}^{out}.$$

Let $\beta = \max_i \frac{W_i}{w_i}$. Then, the FTPRL-Diag is $\sqrt{2}\beta$ -competitve with $\mathcal{Q}_{\mathrm{diag}}$ on \mathcal{F} .

3.3. A post-hoc bound for diagonal regularization on L_p balls

- ▶ Suppose the feasible set \mathcal{F} is an unit L_p ball: $\mathcal{F} = \{x | \|x\|_p \le 1\}$
- ▶ Consider the post-hoc bound optimization problem with $Q = Q_{diag}$.

Theorem 11 For p>2, the optimal regularization matrix for B_R in $\mathcal{Q}_{\text{diag}}$ is not coordiante-constant, except in the degenerate case where $G_i=\sum_{t=1}^T g_{t,i}^2$ is the same for all i. However for $p\leq 2$, the optimal regularization matrix in $\mathcal{Q}_{\text{diag}}$ always belongs to $\mathcal{Q}_{\text{const}}$.

- ▶ In this section, we develop an algorithm for feasible sets $\mathcal{F} \subseteq \{x | \|Ax\|_p \le 1\}$, where $p \in [1,2]$ and $A \in S_{++}^n$.
- ▶ Theorem 13 When $\mathcal{F} = \{x | \|Ax\|_2 \le 1\}$, this algorithm (FTPRL-Scale), is $\sqrt{2}$ -competitive with arbitrary S^n_+ . For $\mathcal{F} = \{x | \|Ax\|_p \le 1\}$ with $p \in [1,2)$ it is $\sqrt{2}$ -competitive with $\mathcal{Q}_{\text{diag}}$.

Theorem 12 Fix an arbitrary norm $\|\cdot\|$, and define two online linear optimization problem:

- 1. $\mathcal{I} = (\mathcal{F}, (g_1, \dots, g_T))$ where $\mathcal{F} = \{x | ||Ax|| \le 1\}$ with $A \in S_{++}^n$
- 2. $\hat{\mathcal{I}}=(\hat{\mathcal{F}},(\hat{g}_1,\ldots,\hat{g}_{\mathcal{T}}))$ where $\hat{\mathcal{F}}=\{\hat{x}|\|\hat{x}\|\leq 1\}$ and $\hat{g}_t=\mathcal{A}^{-1}g_t$.

Then if we run any algorithm dependent only on subgradients on $\hat{\mathcal{I}}$, and it plays $\hat{x}_1,\ldots,\hat{x}_T$, then by playing the corresponding points $x_t=A^{-1}\hat{x}_t$ on \mathcal{I} we achieve identical loss and regret. Furthermore, the post-hoc optimal bound over arbitrary $Q\in S^n_{++}$ is identical for these two instance.

▶ Using Thm 12, we can now define the adaptive algorithm FTPRL-Scale.

Algorithm 2 FTPRL-Scale

```
Input: feasible set \mathcal{F} \subseteq \{x \mid ||Ax|| \le 1\},
  with A \in S_{++}^n
Let \hat{\mathcal{F}} = \{x \mid ||x|| \le 1\}
Initialize x_1 = 0, (\forall i) D_i = b_i - a_i
for t = 1 to T do
    Play the point x_t, incur loss f_t(x_t)
    Let g_t \in \partial f_t(x_t)
   \hat{g}_t = (A^{-1})^{\top} g_t
   \bar{\alpha} = \sqrt{\sum_{\tau=1}^t \sum_{i=1}^n \hat{g}_{\tau,i}^2}
    \alpha_t = \bar{\alpha} - \alpha_{1:t-1}
    q_t = \alpha_t x_t
    \hat{u}_{t+1} = (1/\bar{\alpha})(q_{1:t} - g_{1:t})
    A_t = (\bar{\alpha}I)^{\frac{1}{2}}
   \hat{x}_{t+1} = \text{Project}_{\hat{\mathcal{F}}, A_t}(\hat{u}_{t+1})
   x_{t+1} = A^{-1}\hat{x}
end for
```

Example: FTPRL-Scale has a better bound.

- ▶ Let $\mathcal{F} = \{x | \|Ax\|_2 \le 1\}$ and $A = \text{diag}(1/a_1, \dots, 1/a_n)$ with $a_i > 0$. WLOG, assume $\max_i a_i = 1$. Then $\text{diameter}(\mathcal{F}) = 2$.
- ▶ We compare the regret bound obtained by directly applying the algorithm of Cor. 8 to that of the FTPRL-Scale algorithm.
- ▶ By Cor. 8, recalling $G_i = \sum_{t=1}^{T} g_{t,i}^2$, we have

$$\mathsf{Regret} \le 4\sqrt{\sum_{i=1}^n G_i} \tag{3}$$

Now consider FTPRL-Scale, which uses the transformation of Thm. 12.
 Applying Cor. 8 to the transformed problem gives

$$\mathsf{Regret} \leq 4 \sqrt{\sum_{i=1}^{n} \sum_{t=1}^{T} \hat{g}_{t,i}^2} = 4 \sqrt{\sum_{i=1}^{n} a_i^2 \sum_{t=1}^{T} g_{t,i}^2} = 4 \sqrt{\sum_{i=1}^{n} a_i^2 G_i}$$

Theorem 11 For p>2, the optimal regularization matrix for B_R in $\mathcal{Q}_{\text{diag}}$ is not coordiante-constant, except in the degenerate case where $G_i = \sum_{t=1}^T g_{t,i}^2$ is the same for all i. However for $p \leq 2$, the optimal regularization matrix in $\mathcal{Q}_{\text{diag}}$ always belongs to $\mathcal{Q}_{\text{const}}$.

▶ Since $\mathcal{F} = \{x | \|x\|_p \le 1\}$ is symmetric, the optimal post-hoc choice will be in the form as

$$\inf_{Q \in \mathcal{Q}_{\mathrm{diag}}} \max_{y \in \mathcal{F}} (2y^\top Q y) + \sum_{t=1}^T g_t^\top Q^{-1} g_t.$$

Letting $Q = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, we can re-write above optimization problem as

$$\max_{\mathbf{y}: \|\mathbf{y}\|_{p} \le 1} \left(2 \sum_{i=1}^{n} y_{i}^{2} \lambda_{i} \right) + \sum_{i=1}^{n} \frac{G_{i}}{\lambda_{i}}. \tag{4}$$

▶ For $p \ge 2$, using the change of variable technique and the Hölder inequality, we have

$$\max_{y: \|y\|_{p} \le 1} \left(2 \sum_{i=1}^{n} y_{i}^{2} \lambda_{i} \right) = \max_{z: \|z\|_{\frac{p}{2}} \le 1} 2 \sum_{i=1}^{n} z_{i} \lambda_{i} = 2 \|\lambda\|_{q},$$

where $q = \frac{p}{p-2}$ (allowing $q = \infty$ for p = 2).

▶ Thus, for $p \ge 2$, the previous bound simplifies to

$$B(\lambda) = 2\|\lambda\|_q + \sum_{i=1}^n \frac{G_i}{\lambda_i}$$
 (5)

- 1 First suppose p > 2.
 - ► Then

$$\Delta B(\lambda)_i := \frac{\partial B(\lambda)}{\partial \lambda_i} = \frac{2}{q} \left(\sum_{i=1}^n \lambda_i^q \right)^{\frac{1}{q}-1} \cdot q \lambda_i^{q-1} - \frac{G_i}{\lambda_i^2} = 2 \left(\frac{\lambda_i}{\|\lambda\|_q} \right)^{q-1} - \frac{G_i}{\lambda_i^2}.$$

▶ If $\lambda_1 = \cdots = \lambda_n$, then we have

$$\left(\frac{\lambda_i}{\|\lambda\|_q}\right)^{q-1} = \left(\frac{\lambda_1}{\left(n\lambda_1^q\right)^{\frac{1}{q}}}\right)^{q-1} = \left(\frac{1}{n^{\frac{1}{q}}}\right) = n^{\frac{1}{q}-1}.$$

► Hence *i*th component of the gradient is $2n^{\frac{1}{q}-1} - \frac{G_i}{\lambda_1^2}$, and so if not all the G_i 's are equal, some component of the gradient is non-zero! ($\Rightarrow \Leftarrow$)

Appendix

Proof of Theorem 11

- 2 For $p \in [1, 2]$,
 - it is easy to show that the sol. to Eq. (4) is

$$B_{\infty}(\lambda) = 2\|\lambda\|_{\infty} + \sum_{i=1}^{n} \frac{G_i}{\lambda_i}.$$
 (6)

▶ The left-term of $B_{\infty}(\lambda)$ only depend on the largest λ_i , and on the right hand we would like all λ_i as large as possible, a solution of the form $\lambda_1 = \cdots = \lambda_n$ must be optimal.

Theorem 13 The diagonal-constant algorithm analyzed in Cor. 8 is $\sqrt{2}$ -competitive with S^n_+ when $\mathcal{F}=\{x|\|x\|_p\leq 1\}$ for p=2, and $\sqrt{2}$ -competitive against $\mathcal{Q}_{\text{diag}}$ when $p\in[1,2)$. Furthermore, when $\mathcal{F}=\{x|\|Ax\|_p\leq 1\}$ with $A\in S^n_{++}$, the FTPRL-Scale algorithm achieves these same competitive guarantees.

Appendix

Proof of Theorem 13

- 1 The results for Q_{diag} with $p \in [1, 2)$ follow from Thm 11, 12 and Cor. 8.
- 2 Consider p = 2, $Q \in S_{++}^n$, $\mathcal{F} = \{x | ||x||_p \le 1\}$.
 - ▶ Then Eq. (6) is tight, so the post-hoc bound for Q is

$$2\max_i(\lambda_i) + \sum_{t=1}^T g_t^\top (PD^{-1}P^\top)g_t,$$

where $Q = PDP^{\top}$, D is a diagonal matrix of positivie eigenvalues and $PP^{\top} = I$.

Let $z_t = P^\top g_t$, so each right-hand term is $\sum_{i=1}^n \frac{z_{t,i}^2}{\lambda_i}$. Hence a solution where $D = \alpha I, \alpha > 0$ is optimal.

Then we have

$$B(\alpha) = 2\alpha + \sum_{t=1}^{T} \mathbf{g}_{t}^{\top} \left(P\left(\frac{1}{\alpha}\mathbf{I}\right) P^{\top} \right) \mathbf{g}_{t} = 2\alpha + \frac{1}{\alpha} \sum_{t=1}^{T} \mathbf{g}_{t}^{\top} \mathbf{g}_{t} = 2\alpha + \frac{G_{T}}{\alpha}$$

▶ Setting $\alpha = \sqrt{G_T/2}$ produces a minimal post-hoc bound of $2\sqrt{2G_T}$, and the coordinate-constant algorithm has regret bound $4\sqrt{G_T}$.