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1. Introduction

» Consider online convex optimization.
» F C R": closed, bounded, convex feasible set

» On each round t=1,..., T, pick a point x; € F.

For a given convex loss function f;,

T T
Regret := Z fr(xe) — nél.gz fr(x).
=1 =t



1. Introduction

» Online gradient descent algorithm acheive upper bound of

O(DMV'T),

where

» D: the Ly diameter of F;

> M: a bound on L2 norms of gradients of the loss functions.

> This is minimax optimal when F is a hypersphere, but we will prove that

much better algorithms exist when F is the hypercube.



1. Introduction

» Hence, we introduce additional parameter 04, ..., 07 that capture more of

the problem'’s structure.
> We choose 0; adaptively based on fi,...,f—1, fort=1,..., T.
» Construct functional upper bounds on reget Bg(61,...,07; fi,..., fr).

» If for all possible (f1,...,fr) we have

BR(91,...,07;ﬂ,..‘,f7)§n inf TBR(G’l,...,H/T;ﬂ,...,fT),
reo

0} ,....60€

then we say the adaptive scheme is x-competitive for the bound

optimization problem.



1. Introduction

» FTPRL (Follow the proximally-regularized leader) algorithm:
On round t+ 1, selects

Xe+1 = argmin (Z(rf(x) + f‘r(X))> )

x€EF =1

where

> x; =0 (W.L.O.G., we assume 0 € F)
> r(x): regularization function; f;(x): convex loss function.

> Consider regularization functions of the form

1 1
() = 517 (x=x0) 3

where Q: is a positive semidefinite matrix (which is adaptively selected).



Overview

» Notations
> Qr=(Qu,...,Q7);

> gr=(g1,---,8T), where g; is a subgradient of f; at x;

4 Ql:t = Zs-:l QT

» For a convex set F, define Fyym = {x— X|x, X € F}.

1. Regret bound:
T

.
N o B
Regret < Br(Qrg7) i= 5 > max (v Q¥) + > _ &/ Quee
t=1 sym t=1

2. We prove competitive ratios w.r.t. Br for several adaptive schemes for
selecting Q; matrices.
3. Find a fundamental connection between the shape of the feasible set and

the importance of choosing the regularization matrices adaptively.



Notations and technical background

» Notations

> Of(x): the set of subgradients of f evaluated at x
> ST : the set of symm. positive semidefinite n X n matrices;
S"++: the set of symm. positive definite n X n matrices

> || -||: L2 norm
» Since f; is convex loss function,
fi(x) > gl (x—x) + fi(x),
where g: € 9f(x;). And the above inequality is tight for x = x;. Hence the

update of FTPRL is

xXEF

1
Xt+1 = argmin (2 Z X — Xr) QT(X_ Xr) + gt X) (1)



2. Analysis of FTPRL

> In this section, we prove the following bound on the regret of FTPRL for

an arbitrary seq. of regularization matrices Q.

Theorem 2 Let 7 C R" be a closed, bounded convex set with 0 € F. Let
QL€ S1 ., and Qa,...,Qr € 5. Define ri(x) = %HQ?(X—)@)H%, and

A= (QM)%. Let f; be a seq. of loss functions with g € 9f;(x;) a sub-gradient
of f; at x;. Then the FTPRL algorithm with x; = 0, and Eq. (1) has a regret

bound .
Regret < ri.7(x) + Z A gl
t=1

where X = argmin, . » f1.7(x) is the post-hoc optimal feasible point.



2. Analysis of FTPRL

Proof of Theorem 2

1 First we show that for a seq. of non-negetive functions ri,...,rr,
T
Regret < rir(¥) + 3 (Alx) — 1))
t=1

(") Define fi(x) = fi(x) + r:(x) and X = argmin, » f;..(x). Then we have

T

> filxe) < minfir(x) < Alr(%)
t=1
T

@Z ft(S(t) + rt()A(t) < rl:T()D<) + 7(1:7'(5()

=1
Since ri(x:) is non-negative, we have
T

Z fi(xe) — f.7(%) < n.7(X) +

t=1 t:

(fi(xt) — fi(xe41))

M~

1



2. Analysis of FTPRL

Proof of Theorem 2 (cont’d)
?
2 We show that fi(x:) — fe(xe+1) < ge(xe — xer1) < ||A;1gt||2.
> (Key idea 1) Let Q € 5’_’H_ and h € R", consider the function
T 1+
fix)=h'x+ 5% Qx.
Let & = argmin,cpn f{u). Then, letting A = Q%, we have

argmin f(x) = argmin ||A(x — 0)]|].
x€F xXEF

> (Key idea 2) Let v,g € R" and let uy = —Q lvand us = —Q 1(v+g).
Then letting x; = argmin, 7 [|A(x— u1)]| and x2 = argmin, = ||A(x— u2)]],

g (x1—x2) < [|A” gl



3. Specific Adaptive Algorithms and Competitive Ratios

» By Thm 2, we have
.
Regret < r.7(%) + Z 1A gel®

1
- E m TQ) + E T Qiig = B Q
2 2527 3;"‘ y Q) - & Wi tgt r(QT, &T)

» Best post-hoc bound: indeGQT BR(@T, g7), where Q C S}

> Using the fact that Qu, ..., Q7 are positive semidefinite matrices, one can

show that the best post-hoc bound can solve an optimization of the form,

T
. lAT o T A1
ot (s (700) + eree). @

t=1



3.1. Adaptive coordinate-constant regularization

> We derive bounds where Q; is chosen from the set Qconst := {allac > 0}.

Corollary 8 Suppose F has Ly diameter D. Then, if we run FTPRL with

diagonal matrices s.t.

(Qur)ii = @ = 2?

where Ge =Yt 577 | g2, then

Regret < 2D+/ Gr.

> If ||gell2 < M, then Gr < M2 T, and this translates to a bound of
O(DMVT).
» When F = {x|||x]|l2 < D/2}, this bound is v/2-competitive for the bound

optimization problem over Qconst.



3.1. Adaptive coordinate-constant regularization

Proof of Corollary 8

> Let the diagonal entries of Q; all be oy = @ — &¢—1 with &g, then

a1+ = at. Note ay > 0, so this choice is feasible.

> Left of BR(éT, g_'T):
letting §: be an arbitrary seq. of points from Fym, and noting ¥ 3 < D?,

T T
AT
t

t=1 t=1

N =
w\r—t

» Right of BR(@T, gr):

M\D
I/\
Q
3
h

th Qg = ZZ ai't D =R

t=1 i=1 t=1



3.1. Adaptive coordinate-constant regularization

Proof of Corollary 8 (cont’d)

> In order to make a competitive guarantee, prove a lower bound on the
post-hoc optimal bound function Bg. When F = {x|||x||2 < D/2}, the

best post-hoc bound is
(1 5 1
min (| —aD” + —G7 | = Dv/2Gr,
a>0 \ 2 «

so conlude the adaptive algorithm is v/2-competitive for the bound

optimization problem.



3.2. Adaptive diagonal regularization

» Define the projection operator,

Pr a(u) = argmin ||A(x — u)]|.
x€F

Then FTPRL update has an equivaluent form as following:

Xet1 = argmin(ri:(x) + g1:ex) (Original FTPRL)
x€F
Urr1 = argmin,cpn(r.e(u) + gi.eu)

(Unconstrained optimization)
xev1 = Proa(Uer1)



3.2. Adaptive diagonal regularization

> To derive a algorithm, first construct a closed-form solution to the
unconstrained problem.

» Since ri(u) = 2(u—xe) " Qe(u — xt), we have

8r1;t(u)

t
ou = Ql:tu - Z Q7'X7'~

T=1

Because uy11 is the optimum of the uncontrained problem,

5’1 t(“) + g1 =0, hence,

U=ur4+1

U1 = QL (Z Qrxr — g1:t> .

r=1

> In this section, set ith entry on the diagonal of Q:.: as




3.2. Adaptive diagonal regularization

Algorithm 1 FTPRL-Diag

Input: feasible set F C X!, [a;, b;]
Initialize 1 = 0 € F
(Vi), Gi=0,¢: =0,X0,, =0,D; =b; — a;
fort =1to 7T do
Play the point x, incur loss fi(z:)
Let g: € Oft ((17,3)
fori =1tondo
)\fl - Dll\/?r - /\l:f,—l,i
Qi = Qi + Ttilti
U1 = (G100 — €)M ieta
end for
Af - diag(\/ A1:t.1~, cees\/ /\1:1,‘77,)

Tey1 = Projecty 4, (Usy1)
end for




3.2. Adaptive diagonal regularization

Corollary 9 Let F be a convex feasible set of width D; in coordinate i. Then, if

we run FTPRL with diagonal matrices s.t.
(Ql:t)ii = S\t,i = E

then

Regret < 2 Z D;

i=1

» When F is a hyperrectangle, then this algorithm is v/2-competitive with
the post-hoc optimal choice of Q; from the
Qdiag = {diag()q7 ey )\n)|A, > O}



3.2. Adaptive diagonal regularization

Example: Practical importance of adaptive regularization

» Suppose F = [ 5 2] then the diameter of F is v/n. On each round t,

~% and is 0 o.w., for some a € [1,2).

geiis 1 w.p. i
> Then expected regret bound are
> GD with a global learning rate: O(v/'nT)

> FTPRL-Diag (using Cor. 9 with D; = 1 and Jensen’s ineq.):

w\
—

[Z Zé?} <Z ZE[g‘?,l—Z\/ﬁfO(ﬁ n!

i=1



3.2. Adaptive diagonal regularization

Theorem 10 Let F be an aribrary feasible set, bounded by a hyperrectangle
K of width W; in coordinate i; let H" be an hyperrectangle contained by F

of width w; > 0 in coordinate i/, i.e.,
H" C F C H*™.

Let f = max; %’ Then, the FTPRL-Diag is \/iﬁ—competitve with Qgisg on F.



3.3. A post-hoc bound for diagonal regularization on L, balls

» Suppose the feasible set F is an unit L, ball: F = {x]||x]|, < 1}

> Consider the post-hoc bound optimization problem with Q = Qgia.

Theorem 11 For p > 2, the optimal regularization matrix for Bg in Qgiag is not
coordiante-constant,
. However for p < 2, the optimal regularization matrix in Qgiag

always belongs to Qconst-



3.4. Full matrix regularization on hyperspheres and hyperellipsoids

> In this section, we develop an algorithm for feasible sets
F C{x|||Ax]|p < 1}, where p€ [1,2] and A€ ST} ;.

» Theorem 13 When F = {x|||Ax||2 < 1}, this algorithm (FTPRL-Scale), is
V/2-competitive with arbitrary S7.. For F = {x]||Ax||, < 1} with p € [1,2)
it is v/2-competitive with Qiag-



3.4. Full matrix regularization on hyperspheres and hyperellipsoids

Theorem 12 Fix an arbitrary norm || - ||, and define two online linear
optimization problem:

1. T=(F,(g1,...,87)) where F = {x|||Ax|| < 1} with A€ S},

2. T=(F,(&,...,&7)) where F = {x|||x]| <1} and g = A" 'g:.
Then if we run any algorithm dependent only on subgradients on Z, and it
plays X1, ..., X7, then by playing the corresponding points x; = A~*X; on Z we
achieve identical loss and regret. Furthermore, the post-hoc optimal bound over

arbitrary Q € S}, is identical for these two instance.

» Using Thm 12, we can now define the adaptive algorithm FTPRL-Scale.



3.4. Full matrix regularization on hyperspheres and hyperellipsoids

Algorithm 2 FTPRL-Scale
Input: feasible set 7 C {x | [[Az| < 1},
with A € 57,
Let F = {a | ||=|| < 1}
Initialize xy =0, (Vi) D; = b; — a;
fort=1to T do
Play the point x, incur loss fi ()
LetJf S Ofért
g = (A"
a = 27:1 i sz
Ny = 0 — (V1:4—1
qr = QT
w1 = (L/a)(qr:e — g1:t)
A, = (al)z
Tpy1 = PI‘OjeC[}*-rAt (flﬁ,l)
Tl — A~1g
end for




3.4. Full matrix regularization on hyperspheres and hyperellipsoids

Example: FTPRL-Scale has a better bound.

>

Let F = {x|||Ax||]2 < 1} and A = diag(1/a1,...,1/a,) with a; > 0.
WLOG, assume max; a; = 1. Then diameter(F) = 2.

We compare the regret bound obtained by directly applying the algorithm
of Cor. 8 to that of the FTPRL-Scale algorithm.

By Cor. 8, recalling G; = Z;l gﬁ,-, we have

Regret < 4 Z G; (3)

i=1

Now consider FTPRL-Scale, which uses the transformation of Thm. 12.

Applying Cor. 8 to the transformed problem gives

Regret < 4 Zng,—él Z ng,—ll ZaQG

i=1 t=1



Appendix

Proof of Theorem 11

Theorem 11 For p > 2, the optimal regularization matrix for Bg in Qgiag is not
coordiante-constant, except in the degenerate case where G; = 2;1 g%,- is the
same for all i. However for p < 2, the optimal regularization matrix in Qgiag

always belongs to Qconst-



Appendix

Proof of Theorem 11

» Since F = {X|||x||» < 1} is symmetric, the optimal post-hoc choice will be

in the form as

-
inf max(2y Qy) +thTQ_1gt-

QEQuiag YEF P

Letting Q = diag(A1, ..., An), we can re-write above optimization problem

as
n n G
max | 2 2ai |+ =, 4
y:livllp<1 < ;y > ; Ai (#)

» For p > 2, using the change of variable technique and the Holder

inequality, we have

max (22)/,-2)\,') = _max 2 Z:)\ = 2[|Allq,
=1

yilivllp<1 z |\l p

where g = # (allowing g = oo for p = 2).



Appendix

Proof of Theorem 11
» Thus, for p > 2, the previous bound simplifies to
B = 2l + 30 2
- ! =N

1 First suppose p > 2.

()

» Then
9B 2 (<n D\ G X\ G
AB()); := o D .mf4—4§:2( ’) -5
6)\,' q =1 >\,' HAIIQ >‘i
> If A1 = --- = \p, then we have
q—1
( A )q71 A1 1 %,1
= = — =n .
lIAllq (mA9)s ne
1
> Hence ith component of the gradient is ona ! - % and so if not all the
1

Gj's are equal, some component of the gradient is non-zero! (=<=)



Appendix

Proof of Theorem 11

2 For p € [1,2],

> it is easy to show that the sol. to Eq. (4) is
n G
Boo(*)=2H>\Hoo+ny- (6)
i=1 "

> The left-term of Boo(\) only depend on the largest A;, and on the right
hand we would like all A; as large as possible, a solution of the form

A1 = .-+ = A, must be optimal.



Appendix

Proof of Theorem 13

Theorem 13 The diagonal-constant algorithm analyzed in Cor. 8 is
V/2-competitive with S when F = {x{||x||, < 1} for p =2, and
V/2-competitive against Quisg When p € [1,2). Furthermore, when

F = {x|||Ax]|, < 1} with A € S, the FTPRL-Scale algorithm achieves these

same competitive guarantees.



Appendix
Proof of Theorem 13

1 The results for Qqiag With p € [1,2) follow from Thm 11, 12 and Cor. 8.
2 Consider p=2, Qe ST, F = {x||x]|, < 1}.
> Then Eq. (6) is tight, so the post-hoc bound for Q is

;
2max(X)) + > &l (PDT'PT)g:
t=1

where Q = PDPT, D is a diagonal matrix of positivie eigenvalues and
PPT = 1.

Let z; = PT g, so each right-hand term is >y 22;\—1’ Hence a solution
where D = al, o > 0 is optimal.

> Then we have
T Gt
7204—&—th P |gt=2a+ — thgt72a+—
=1

> Setting & = y/G71/2 produces a minimal post-hoc bound of 2/2G7, and
the coordinate-constant algorithm has regret bound 4/Gr.
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