# Adaptive Subgradient Methods for Online Learning and Stochastic Optimization Journal of Machine Learning Research (2011)

John Duchi, Elad Hazan and Yoram Singer

Presenter: Gyuseung Baek

June 3, 2019

#### Introduction

- New family of subgradient methods that dynamically incorporate knowledge of the geometry of the data
- Boost learning rarely observed variable's coefficient.

# Existing online learning algorithm

- Suppose *h* is 1-strongly convex function.
- RDA: update  $\{x_t\}$  as

$$x_{t+1} = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \left\{ \eta \left\langle \bar{g}_t, x \right\rangle + \eta \psi(x) + h_t(x) \right\} \tag{1}$$

- FOBOS (Forward-backward spliiting): update  $\{x_t\}$  as
  - $x_{t+\frac{1}{2}} = x_t \alpha_t g_t$
  - $\arg\min_{x} \left\{ \frac{1}{2} \left\| x x_{t+\frac{1}{2}} \right\|_{2}^{2} + \alpha_{t} \psi(x) \right\}$
- Generalization of FOBOS : update  $\{x_t\}$  as

$$x_{t+1} = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \left\{ \eta \left\langle g_t, x \right\rangle + \eta \psi(x) + B_{h_t}(x, x_t) \right\} \tag{2}$$

where  $B_{h_t}(\cdot)$ : Bregman divergence associated with  $h_t$ . Let  $||\cdot||_t$  be a norm which make  $h_t$  1-strongly convex.

# Regret bound of existing online learning algorithm

• **Proposition 2** Let the sequence  $\{x_t\}$  be defined by (1). For any  $x \in \mathcal{X}$ ,

$$R_t(x) \le \frac{1}{\eta} h_t(x) + \frac{\eta}{2} \sum_{\tau=1}^t \|g_{\tau}\|_{\tau-1}^2$$
 (3)

• **Proposition 3** Let the sequence  $\{x_t\}$  be defined by (2). Assume w.l.o.g. that  $\psi(x_1) = 0$ . For any  $x \in \mathcal{X}$ ,

$$R_{t}(x) \leq \frac{1}{\eta} B_{h_{1}}(x, x_{1}) + \frac{1}{\eta} \sum_{\tau=1}^{t-1} \left[ B_{h_{\tau+1}}(x, x_{\tau+1}) - B_{h_{\tau}}(x, x_{\tau+1}) \right] + \frac{\eta}{2} \sum_{\tau=1}^{t} \|g_{t}\|_{h_{\tau}}^{2}$$

$$(4)$$

#### Intuition of AdaGrad

- In regret bounds, selection of  $h_t$  effect to the norm  $\left\|\cdot\right\|_{h_t}$ .
- If  $h_t$  satisfies  $||x||_{h_t} = \langle x, diag(s)^{-1}x \rangle$  for some s (it holds if  $h_t(x) = \langle x, diag(s)x \rangle$ ), then

$$\sum_{\tau=1}^{t} \|g_{\tau}\|_{\tau-1}^{2} = \sum_{\tau=1}^{t} \sum_{i=1}^{d} \frac{g_{t,i}^{2}}{s_{i}}$$
 (5)

• For  $s \succeq 0, \langle 1, s \rangle \leq c$ , equation (5) is minimized if  $s = c' \cdot g_{1:t}$  where c' is a normalized constant.

## Regret bound of AdaGrad

• Thm 5 Let  $h_t(x) = \langle x, diag(\delta + g_{1:t})x \rangle$  and suppose  $\delta \geq \max_t \|g_t\|_{\infty}$ . Then for any  $x \in \mathcal{X}$ ,  $\{x_t\}$  acquired by (1) has regret bound

$$R_{t}(x) \leq \frac{\delta}{\eta} \|x\|_{2}^{2} + \frac{1}{\eta} \|x\|_{\infty}^{2} \sum_{i=1}^{d} \|g_{1:t,i}\|_{2} + \eta \sum_{i=1}^{d} \|g_{1:t,i}\|_{2}$$

$$= O\left(\|x\|_{\infty} \sum_{i=1}^{d} \|g_{1:t,i}\|_{2}\right)$$
(6)

For any  $x \in \mathcal{X}$ ,  $\{x_t\}$  acquired by (2) has regret bound

$$R_{t}(x) \leq \frac{1}{2\eta} \max_{\tau \leq t} \|x - x_{t}\|_{\infty}^{2} \sum_{i=1}^{d} \|g_{1:t,i}\|_{2} + \eta \sum_{i=1}^{d} \|g_{1:t,i}\|_{2}$$

$$= O\left(\max_{\tau \leq t} \|x_{\tau} - x\|_{\infty} \sum_{i=1}^{d} \|g_{1:t,i}\|_{2}\right)$$
(7)

## Strength of AdaGrad

- If domain  $\mathcal X$  is bouned by infinity norm, 2-norm is much bigger than  $\infty$ -norm. So it can avoid the curse of dimensionality
- If variable i is not observed before time t,  $g_{\tau,i}=0$  for all  $\tau \leq t$ . So coefficients of variable i is rapidly learned at time t. (This is proven by experiments)

# Proof of Proposition 2

Define  $h_t^*$  to be the conjugate dual of  $\psi(x) + h_t(x)/\eta$ 

$$h_t^*(g) = \sup_{x \in \mathcal{X}} \left\{ \langle g, x \rangle - \psi(x) - \frac{1}{\eta} h_t(x) \right\}$$

Since  $\psi_t/\eta$  is  $1/\eta$ strongly convex with respect to the norm  $\|\cdot\|_{h_t}$ , the function  $h_t^*$  has  $\eta$ -Lipschitz continuous gradients with respect to  $\|\cdot\|_{h_t}$ 

$$\|\nabla h_t^*(g_1) - \nabla h_t^*(g_2)\|_{\psi_t} \le \eta \|g_1 - g_2\|_{h_t^*}$$
(8)

for any  $g_1, g_2$ .

Futher, a simple argument with the fundatmental theorem of calculus gives that if g has L-Lipschitz gradients,

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + (L/2) ||y - x||^2$$
, and

$$\nabla h_t^*(g) = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \left\{ -\langle g, x \rangle + \psi(x) + \frac{1}{\eta} h_t(x) \right\}$$
 (9)

# Proof of Proposition 2

Then

$$R_{t}(x) = \sum_{\tau=1}^{t} f_{\tau}(x_{\tau}) + \psi(x_{\tau}) - f_{\tau}(x) - \psi(x)$$

$$\leq \sum_{\tau=1}^{t} \langle g_{\tau}, x_{\tau} - x \rangle - \psi(x) + \psi(x_{t})$$

$$\leq \sum_{\tau=1}^{t} \langle g_{\tau}, x_{\tau} \rangle + \psi(x_{t}) + \sup_{y \in X} \left\{ -\sum_{\tau=1}^{t} \langle g_{\tau}, y \rangle - t\psi(y) - \frac{t}{\eta} h_{t}(y) \right\} + h_{t}(x)$$

$$= \frac{t}{\eta} \psi_{t}(x) + \sum_{\tau=1}^{t} \langle g_{\tau}, x_{\tau} \rangle + \psi(x_{\tau}) + \psi_{t}^{*}(-g_{1:t})$$

# Proof of Proposition 2

Since  $h_{t+1} \geq h_t$ ,

$$\begin{split} \psi_{t}^{*}\left(-g_{1:t}\right) &= -\sum_{\tau=1}^{t} \left\langle g_{\tau}, x_{t+1} \right\rangle - t\psi\left(x_{t+1}\right) - \frac{1}{\eta}h_{t}\left(x_{t+1}\right) \\ &\leq -\sum_{\tau=1}^{t} \left\langle g_{\tau}, x_{t+1} \right\rangle - (t-1)\psi\left(x_{t+1}\right) - \psi\left(x_{t+1}\right) - \frac{1}{\eta}\psi_{t-1}\left(x_{t+1}\right) \\ &\leq \sup_{y \in \mathcal{X}} \left( -\left\langle g_{1:t}, y \right\rangle - (t-1)\psi(y) - \frac{1}{\eta}h_{t-1}(y) \right) - \varphi\left(x_{t+1}\right) \\ &= h_{t-1}^{*}\left(-g_{1:t}\right) - \psi\left(x_{t+1}\right) \end{split}$$

Identity (9) and the fact that  $g_{1:t} - g_{1:t-1} = g_t$  give

$$\begin{split} R_{t}(x) &\leq \frac{1}{\eta} h_{t}\left(x\right) + \sum_{\tau=1}^{t} \left\langle g_{\tau}, x_{\tau} \right\rangle + \psi\left(x_{\tau+1}\right) + h_{t-1}^{*}\left(-g_{1:t}\right) - \psi\left(x_{t+1}\right) \\ &\leq \frac{1}{\eta} h_{t}\left(x\right) + \sum_{\tau=1}^{t} \left\langle g_{\tau}, x_{\tau} \right\rangle + \psi\left(x_{\tau+1}\right) - \psi\left(x_{t+1}\right) \\ &+ h_{t-1}^{*}\left(-g_{1:t-1}\right) - \left\langle \nabla h_{t-1}^{*}\left(g_{1:t-1}\right), g_{t} \right\rangle + \frac{\eta}{2} \left\|g_{t}\right\|_{h_{t-1}}^{2} \\ &= \frac{1}{\eta} h_{t}\left(x\right) + \sum_{\tau=1}^{t} \left\langle g_{\tau}, x_{\tau} \right\rangle + \psi\left(x_{\tau+1}\right) + h_{t-1}^{*}\left(-g_{1:t-1}\right) + \frac{\eta}{2} \left\|g_{t}\right\|_{h_{t-1}}^{2} \end{split}$$

We can repeat the same steps that gaves the proposition 2.