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Introduction

e New family of subgradient methods that dynamically incorporate
knowledge of the geometry of the data

o Boost learning rarely observed variable's coefficient.



Existing online learning algorithm

e Suppose h is 1-strongly convex function.

RDA: update {x;} as

xer1 = argmin {n (&, x) +n(x) + h(x)} (1)

FOBOS (Forward-backward spliiting): update {x:} as

L] Xt+% = Xt — Ot8t
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e Generalization of FOBOS : update {x;} as

Xe1 = argé”;i“ {n (g, x) +n(x) + B, (x,x:)} (2)

where By, (+): Bregman divergence associated with h;. Let || - || be a norm
which make h; 1-strongly convex.



Regret bound of existing online learning algorithm

e Proposition 2 Let the sequence {x;} be defined by (1). For any x € X,

Ri(x) < hf ”anTuTl (3)

e Proposition 3 Let the sequence {x;} be defined by (2). Assume w.l.o.g.
that ¥(x1) = 0. For any x € X,

1
R(x) < B (x.)
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Intuition of AdaGrad

e In regret bounds, selection of h; effect to the norm ||-||, .

o If h; satisfies ||x|, = (x, diag(s)~'x) for some s (it holds if
he(x) = (x, diag(s)x)), then
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e For s > 0,(1,s) < c, equation (5) is minimized if s = ¢’ - g1.: where ¢ is a
normalized constant.



Regret bound of AdaGrad

e Thm 5 Let h(x) = (x, diag(d + g1.t)x) and suppose § > max; ||gt|
Then for any x € X, {x:} acquired by (1) has regret bound

Re(x) < —~ ||X||2 HXII
(6)
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For any x € X, {x:} acquired by (2) has regret bound
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Strength of AdaGrad

e |f domain X is bouned by infinity norm, 2-norm is much bigger than
oo-norm. So it can avoid the curse of dimensionality

e If variable i is not observed before time t, g-; = 0 for all 7 < t. So
coefficients of variable 7 is rapidly learned at time t. (This is proven by
experiments)



Proof of Proposition 2

Define h{ to be the conjugate dual of ¥(x) + h:(x)/n

i) = s { (g — 000 — T}

xeX
Since )¢ /n is 1/nstrongly convex with respect to the norm || - ||, , the function
hf has n-Lipschitz continuous gradients with respect to || - |5,
IVhe (&) = Vhe (&2)ll,, < nller — g2l (8)

for any g1, g».
Futher, a simple argument with the fundatmental theorem of calculus gives

that if g has L-Lipschitz gradients,
f(y) < F(x) + (VF(x),y = x) + (L/2)]ly — x||*, and

V() = argmin { ~(g. ) + v + o) ©)



Proof of Proposition 2

Then

Re(x) = 3 () + 9 (%) — - (x) — 9 (x)
<D groxe = x) = (x) + 9 (x)

<3 (g o) 0 (x) +sup {— S (groy) — toly) — ;hf(y)} + e (x)
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= %wt )+ S {gr,x) + 9 (x0) + 7 (—gur)



Proof of Proposition 2

Since hey1 > hy,
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Proof of Proposition 2

Identity (9) and the fact that g1.: — g1.t—1 = gt give

Re(x) < lht (x)+ Z (gr,xr) + 1 (xr41) + hiy (—g1e) — ¥ (1)
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We can repeat the same steps that gaves the proposition 2.



