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Introduction

• Objective function(Loss function): ft(x)− f (x , zt)
• f : loss function, zt : data obtained at time t

• Regularzier: ψ(x): closed convex function

• Let φ(x) = f (x) + ψ(x)

• Online learning algorithm: from data z1, z2, · · · , zt , · · · , achieve
x1, x2, · · · , xt , · · ·

• Goal: Let φ∗ = minx φ(x). generate {xt} s.t.

lim
t→∞

φ(xt) = φ∗ (1)



Stochastic Gradient Descent (SGD)

• SGD: Let gt ∈ ∂ft(xt). for some step size αt ,

xt+1 = xt − αt(gt + ξt)

where ξt : subgradient of ψ at xt

• If αt = c/
√
t, c: constant, {xt} satisties (1) with convergence rate

O(1/
√
t)

• It is indeed best possible for subgradient schemes with a black-box model
(only function values and gradient informations are allowed) (Nemirovsky
and Yudin, 1983)

• Drawbacks: At each time t, solution xt does not satisfies the regularization



Regularized dual averaging (RDA)

• Update xt as:

xt+1 = arg min
x

{
1

t

t∑
τ=1

〈gτ ,w〉+ ψ(x) +
βt
t
h(x)

}
(2)

where h(x) is an auxilaiary strongly convex function s.t.
argmin h ⊂ argminψ, and {βt}t≥1 is a nonnegative and nondecreasing
input sequence(learning rate).

• Convergence rates:
• If βt = Θ(

√
t),

Eφ (x t)− φ? ≤ O

(
G
√
t

)
where x t = (1/t)

∑t
τ=1 xτ , G : uniform upper bound on the norms of the

subgradients gt .
• If ψ is strongly convex, then setting βt ≤ O(lnt) gives a faster convergence

rate O(lnt/t)
• If f (x , z) are all diff’ble and have Lipschitz continuous gradients (with

const. L),

Eφ (xt)− φ? ≤ O(1)

(
L

t2
+

Q
√
t

)



Regret bound

• Regret

Rt(x) ,
t∑
τ=1

(fτ (xτ ) + Ψ (xτ ))−
t∑
τ=1

(fτ (x) + Ψ(x))

• If {xt} is acquired from simple SGD, Rt(x) = O(
√
t) for all x ∈ domψ.

• Similary, If {xt} is acquired from RDA,

• Rt(x) = O(
√
t) for βt = Θ(

√
t)

• Rt(x) = O(lnt) for βt = O(lnt), ψ : strongly convex.



Strongly convex

• If a function f is convex, then

f (x) ≥ f (y)+ < g , x − y > +
σ

2
||x − y ||2, ∀g ∈ ∂f (y) (3)

for σ ≥ 0.

• If there exist σ > 0 s.t. (3) hold for all x ∈ domf , f is strongly convex
with modulus σ w.r.t. norm || · ||.

• σ is called a convexity parameter of f .



Regret Bounds for online optimization

• Assumption
• Suppose h(x) is strongly convex with modulus 1 and h(x) ≤ D2 for all

x ∈ domψ.
• Let ΓD = supx :h(x)≤D2 infg∈∂ψ(x) ‖g‖∗
• For all t ≥ 1, there exist G s.t. ‖gt‖∗ ≤ G

• Let σ be a convexity parameter of ψ. If we set β0 = max{σ, β1}, we can
acquire the sequence of regret bounds

∆t , βtD
2 +

G 2

2

t−1∑
τ=0

1

στ + βτ
+

2 (β0 − β1)G 2

(β1 + σ)2 , t = 1, 2, 3, . . . (4)



Regret Bounds for online optimization

• Thm 1 Let {xt}t≥1 be generated by RDA algorithm and above
assumptions hold. Then for any t ≥ 1, we have

1 The regret bound is bounded by ∆t

Rt(x) ≤ ∆t

2 The primal variables are bounded as

‖xt+1 − x‖2 ≤
2

σt + βt
(∆t − Rt(x))

3 If x in an interior point of domψ, then

‖gt‖∗ ≤ ΓD −
1

2
σr +

1

rt
(∆t − Rt(w))



Regret Bounds for general convex regularization

• Corr 1 Let {xt}t≥1 be generated by RDA algorithm and above
assumptions hold. Set βt = γ

√
t for t ≥ 1. Then for any t ≥ 1, we have

1 The regret bound is bounded as

Rt(x) ≤
(
γD2 +

G2

γ

)√
t

2 The primal variables are bounded as

‖xt+1 − x‖2 ≤ D2 +
G2

γ2
−

1

γ
√
t
Rt(x)

3 If x in an interior point of domψ, then

‖gt‖∗ ≤ ΓD +

(
γD2 +

G2

γ

)
1

r
√
t
−

1

rt
Rt(x)

• This bound is the same as the regret bound of SGD algorithm (Zinkevich,
2003)

• If we set γ? = G
D

, then Rt(x) ≤ 2GD
√
t



Regret Bounds for strongly convex regularization

• If ψ is strongly convex, βt ≤ O(lnt) will give an O(lnt) regret bound.
• let βt = σ for t ≥ 0. Then

∆t = σD2 +
G2

2σ

t−1∑
t=0

1

τ + 1
≤ σD2 +

G2

2σ
(1 + ln t)

• let βt = σ(1 + ln t) for t ≥ 1. Then

∆t = σ(1+ln t)D2 +
G2

2σ

(
1 +

t−1∑
τ=1

1

τ + 1 + ln τ

)
≤
(
σD2 +

G2

2σ

)
(1+ln t)

• let βt = 0 for t ≥ 1. Then

∆t =
G2

2σ

(
1 +

t−1∑
τ=1

1

τ

)
+

2G2

σ
≤

G2

2σ
(6 + ln t)



Convergence rates for stochastic learning

• Thm 3 Assume x∗ = argminx φ(x) that satisifes h(x∗) ≤ D2 for some D
and let φ∗ = φ(x∗). Let {xt}t≥1 be generated by RDA algorithm and
assume ||gt ||∗ ≤ G for all t ≥ 1. Then we have

1 The expected cost associated with the random vairable x̄t is bounded as

Eφ (xt)− φ? ≤
1

t
∆t

2 The primal variables are bounded as

E ‖xt+1 − x?‖2 ≤
2

σt + βt
∆t

3 If x∗ in an interior point of domψ, then

E ‖g t‖∗ ≤ ΓD −
1

2
σr +

1

rt
∆t



High probability bounds

• Thm 5 Assume h(x∗) ≤ D2 for some D and for all t ≥ 1, h(xt) ≤ D2. Let
{xt}t≥1 be generated by RDA algorithm and assume ||gt ||∗ ≤ G for all
t ≥ 1. Then for any δ ∈ (0, 1), we have, with probability at least 1− δ,

φ (x t)− φ? ≤
∆t

t
+

8GD
√

ln(1/δ)√
t

(5)


