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Introduction

Objective function(Loss function): fi(x) — f(x, z)
e f: loss function, z;: data obtained at time t

Regularzier: 1)(x): closed convex function

Let 6(x) = £(x) + (x)

e Online learning algorithm: from data z;,z, -, z,---, achieve
X1, X0, Xty
e Goal: Let ¢* = min, ¢(x). generate {x:} s.t.

lim ¢(x¢) = ¢*

t— o0

(1)



Stochastic Gradient Descent (SGD)

o SGD: Let g; € Ofi(x:). for some step size a,
Xt4+1 = Xt — at(gt + ft)

where &; : subgradient of ¢ at x;

o If ar = ¢/\/t, c: constant, {x:} satisties (1) with convergence rate
0(1/v1)

o It is indeed best possible for subgradient schemes with a black-box model

(only function values and gradient informations are allowed) (Nemirovsky
and Yudin, 1983)

e Drawbacks: At each time t, solution x; does not satisfies the regularization



Regularized dual averaging (RDA)

e Update x; as:

1 Bt
Xes1 = arg min {t Z:l (gr, w) +(x) + - h(x) (2)
where h(x) is an auxilaiary strongly convex function s.t.

argmin h C argmin, and {f:}:>1 is a nonnegative and nondecreasing
input sequence(learning rate).

o Convergence rates:

o If Bt = @(ﬁ)

Eé (%e) — ¢" < O (;)

where X; = (1/t) >.! _; xr, G: uniform upper bound on the norms of the
subgradients g;.

o If ¢ is strongly convex, then setting 8: < O(Int) gives a faster convergence
rate O(Int/t)

o If f(x,z) are all diff'ble and have Lipschitz continuous gradients (with
const. L),

E¢ (x:) — ¢* < O(1) (tg N %)



Regret bound

o Regret

t

Re(x) £ (F (%) + W (%)) = D (Fr(x) + V()

T=1

o If {x:} is acquired from simple SGD, R:(x) = O(+/t) for all x € dom.
e Similary, If {x;} is acquired from RDA,

o Ri(x) = O(\/t) for Bt = ©(\/1)
e R:i(x) = O(Int) for Bt = O(Int),) : strongly convex.



Strongly convex

e If a function f is convex, then
o
() 2 f)+ <gx—y>+5llx—ylP’, Ve €of(y) (3)

for o > 0.

e If there exist 0 > 0 s.t. (3) hold for all x € domf, f is strongly convex
with modulus o w.r.t. norm || - ||.

e o is called a convexity parameter of f.



Regret Bounds for online optimization

e Assumption
e Suppose h(x) is strongly convex with modulus 1 and h(x) < D? for all
x € domy.
o Letlp = SUPx:h(x)< D? i”fgeaw(x) llg |
e Forall t > 1, there exist G s.t. ||gt||, < G

e Let o be a convexity parameter of 1. If we set So = max{o, 81}, we can
acquire the sequence of regret bounds

G2 1 2(Bo — B1) G
A2 D2+—§ + . t=1,2,3,... (4
I T L E Y ity “



Regret Bounds for online optimization

e Thm 1 Let {x;}+>1 be generated by RDA algorithm and above
assumptions hold. Then for any t > 1, we have

@ The regret bound is bounded by A
Ri(x) < A¢

@® The primal variables are bounded as

[[xe41 — x|I* < (At — Re(x))

ot + Bt

® If x in an interior point of dom1), then

1 1
lgtll, <Tpo — sor+ — (At — Re(w))
2 rt



Regret Bounds for general convex regularization

e Corr 1 Let {x:}+>1 be generated by RDA algorithm and above
assumptions hold. Set 8; = v/t for t > 1. Then for any t > 1, we have
@ The regret bound is bounded as

G2
Re(x) < ("/02 + 7) Vit
Y
@® The primal variables are bounded as
G? 1
l[xe+1 = x| < D* + =5 = —=Re(x)
Yot
@ If x in an interior point of dom, then

G2\ 1 1
<r D>+ —) ——-=R
Hgt”* >!D + <Fy + ~ ) I’\/E rt t(X)

e This bound is the same as the regret bound of SGD algorithm (Zinkevich,
2003)

o If we set v* = g, then R:(x) < 2GD+/t



Regret Bounds for strongly convex regularization

e If ¢ is strongly convex, 3; < O(Int) will give an O(Int) regret bound.
o let Bt = o for t > 0. Then
G2 t—1

2
At =oD +§;

2
<oD?+ 1+Int
7'+170 0'(+n)

o let Bt =0(1l+Int) fort > 1. Then

t—1

G2 1 G?
A =o(l+Int)D?>+— (1 — = )< (oD*+ =) (1+I
¢ =0(1+Int)D*+ - < +;T+1+In7)_(a +20)(+nt)

o let Bt =0 fort>1. Then

1 2G?
A <1+Z >+G<2G(6+Int)



Convergence rates for stochastic learning

e Thm 3 Assume x* = argmin, ¢(x) that satisifes h(x*) < D? for some D
and let ¢* = ¢(x™). Let {xt}t>1 be generated by RDA algorithm and

assume ||g¢|[« < G for all t > 1. Then we have
@ The expected cost associated with the random vairable X; is bounded as
_ 1
Ed (Xt) — ¢ < FA
® The primal variables are bounded as
2
ot + Bt

E [[xe41 — x*||* < At
© If x* in an interior point of dom), then

1 1
Elgl, <Tp—Sor+ —A:
2 rt



High probability bounds

e Thm 5 Assume h(x*) < D? for some D and for all t > 1, h(x;) < D?. Let
{xt}+>1 be generated by RDA algorithm and assume ||g:||« < G for all
t > 1. Then for any § € (0,1), we have, with probability at least 1 — 4,

o) - o7 < B 4 OV AR (5)



