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Introduction

o DNN rarely overfit training data despite of its large structure

e Calculate sample complexity(generalization error) independent to the
network size is important

e Ex) Neyshabur et al. [2015]: Fully connected network, W;: ith parameter
matrix. ||| - ||||: Frobenius norm, each ith layer’s Frobenius norm is
bounded by Mg(i), then the generalizatino error scales as
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Introduction

e Reduce complexity from exponential to polynomial depth dependence

e From depth dependence to depth independence

e Calculate lower bound



Notation

Small letter is a vector, Capital letter is a matrix

1/p
For p > 1, |lwl|, = (ELI |w,-\p) will refer to the £, norm.

For p > 1,||W/||, is the Schatten p-norm (p-norm of the spectrum of W).

e p = oco: Spectral norm (we will drop the oo subscript).
p = 2: Frobenius norm(||W/||g), p = 1: trace norm.

Wi = (£ (5, ms)™")

For function class ‘H and some set of data points x1,...,Xm € X, we
define the (empirical) Rademacher complexity Rm(H) as
1 m
7@,7,7-[ = [E. |sup — eih (x;
00 = |sup 2 3= in(0)

where € = (£1,...,em) is a vector uniformly distributed in {—1,+1}".



Model

Domain: X = {x: ||x|| < B}
Model: Standard Fully connected DNN (real function)
X Wd(fd,1 (Wd715d72 ( ..01 (W1X)))
where each W; is a parameter matrix, and each o; is some fixed Lipschitz
continuous function.

d: depth, h: width ( maximal row or column dim of W4, ---, Wy

Vj,oj has a Lipschitz constant of at most 1, positive-homogeneous
(0(az) = ao(z) for all @ > 0 and z € R)

W;: shorthand for the matrix tuple { Wy, Wi, ..., W, }

Nw;: function from layers b through r:
x = Weor—1 (Wi—1or—2 (- .. b (Whx)))



From exponential to polynomial depth dependence

o Compute the Rademacher complexity: using ‘peeling’ argument: reduce

depth r networks to depth r — 1 networks.

E. sup—Zeh(x)— sup —Zera(h(x))

herg M ‘= hEH g1 Wel|Wall g <ME(d) M

can be upper bounded by Mr(d) - Ecsup,cs, | |5
2Mr(d) - Ee suppeqy, , [l 207 €ih (%)
e Factor 2 is generally unavoidable(Ledoux and Talagrand, 1991)

e By Jensen’s Inequality,

Rm(H) = /1\Iogexp </\ E. sup Ze, Xji) )

heH *;

1
—log [ Ec supexp | A e,—h Xj
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From exponential to polynomial depth dependence

Theorem 1. Let H 4 be the class of real-valued networks of depth d over the
domain X, where each parameter matrix W; has Frobenius norm at most

Mk (j), and let o be a 1-Lipschitz, positive-homogeneous activation function
which is applied element-wise. Then

Rom (Ha) < % H Me(j) - (v/2log(2)d + 1) Z [1xi]1?

B(y/210g(@)d + 1) [T°., Mr())
= Jm




From exponential to polynomial depth dependence

e Thm 1 can be applied to the infinity norm

Theorem 2. Let Hy be the class of real-valued networks of depth d over the
domain X, where [|[Wj||, ., < M(j), and let o be a 1-Lipschitz activation
function with o(0) = 0, applied element-wise. Then

Rm(ﬂd)s%H (V21og(2)d +1) an,u

B(y/2log(2)d + 1) T}, Mr(j)
Vvm




From Depth Dependence to Independence

Theorem 3. For any p € [1,00), any network Nyg such that Hf;l Wil >T

and Hle [Will, < M and for any r € {1,...,d}, there exists another network
NWld (of the same depth and layer dimensions) with the following properties:

o WY = {VT/l, e Wd} is identical to Wy, except for the parameter matrix

W, in the r’ — th layer, for some r’ € {1,2,...,r}. The matrix W, is of
rank at most 1, and equals suv" where s, u, v are some leading singular
value and singular vectors pairs of W,

o 1/p
o subcx || Mg (%) — N (0)]| < B (T W) (s

(Only one parameter is different and output is similar)



From Depth Dependence to Independence

Theorem 4. Let H be a class of fiuctions from Euclidean space to [—R, R]. Let
Fl,» be the class of of L -Lipschitz functions from [—R, R] to R, such that

f(0) = a for some fixed a. Letting Fr,0H = {f(h(:)): f € Fra, h € H}, its
Rademacher complexity satisfies

Ron (FraoHM) < clL (% + log*?(m) - 7A€m(’H)>

where ¢ > 0 is a universal constant.



From Depth Dependence to Independence

Theorem 5. Consider the following hypothesis class of networks on
X ={x:||x|| < B}:

[, W >T
M we vje{l_,.d},mevw,max{ll il Iwall, }§1}

MG) 7 Mp(j)

for some parameters p,I > 1, {M(j), Mp(j), V\}J}}jﬂ - Also, for any
re{l,...,d}, define

Nw; maps to R
vie{l...r—1} W, e W;
wil Iwill

H, = Ner:: '
Vje{l...r},max{ M(Ji)’ Mp(/)p} <1




From Depth Dependence to Independence

Finally, for m > 1, let £oH = {(¢1 (h(x1))) : h € H}, where {1,... £ are
real-valued loss functions which are %-Lipschitz and satisfy

d .
01(0) = £ = €m(0) = a, for some a € R. Assume that |a| < M

Then the Rademacher complexity 7’\2,,7(( o H) is upper bounded by

BILLMO) o [log(m) o R |
~y re{l,...,d} B S e 1=, M(j)
1 d . 1/p
log (F Hj:l MP(J)) n ]_Jri Viogr
r vm

where ¢ > 0 is a universal constant.



From Depth Dependence to Independence

Corr 1. Let H be the class of depth-d neural networks, where each parameter
matrix W; satisfies ||W;||; < Mg(j), and with 1-Lipschitz,
positive-homogeneous, element-wise activation functions. Assuming the loss
function ¢ and H satisfy the conditions of Thm. 5 (with the sets W; being
unconstrained, it holds that

. BMY_ Me(j log**(m) /log (£M¢_, M£(j))
Rm(loH) < O M,min M

~ m1/4

where log(z) := max{1, log(z)}



From Depth Dependence to Independence

Ignoring logarithmic factors and replacing the min by its first argument, the
bound in the corollary is at most

« [ BITZ, Me(j) | log (% I, MF(j))
o 5 NG )

Assuming [ Me(j) and [[; Mr(j)/T are bounded by a constant, we get a
bound which does not depend on the width or depth of the network.



Lower Bound for Schatten Norms

Thm 7. Let H be the class of depth-d, width-h neural networks, where each
parameter matrix W; with respect to which satisfies ||Wj||, < M,(j) for some

Schatten p—norm || - ||, (and where use the convention that p = co refers to
the spectral norm). Then there exists a choice of 2 —Lipschitz loss £ and data
points x1,...,Xm € X with respect to which

BITL, Mol - 143

Rm(loH) > Q
(et W




