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Introduction

• DNN rarely overfit training data despite of its large structure

• Calculate sample complexity(generalization error) independent to the
network size is important

• Ex) Neyshabur et al. [2015]: Fully connected network, Wi : ith parameter
matrix. ‖‖ · ‖‖: Frobenius norm, each ıth layer’s Frobenius norm is
bounded by MF (i), then the generalizatino error scales as

O

(
B2d ∏d

j=1 MF (j)
√
m

)



Introduction

• Reduce complexity from exponential to polynomial depth dependence

• From depth dependence to depth independence

• Calculate lower bound



Notation

• Small letter is a vector, Capital letter is a matrix

• For p ≥ 1, ‖w‖p =
(∑h

i=1 |wi |p
)1/p

will refer to the `p norm.

• For p ≥ 1, ‖W ‖p is the Schatten p-norm (p-norm of the spectrum of W ).
• p =∞: Spectral norm (we will drop the ∞ subscript).

p = 2: Frobenius norm(‖W ‖F ), p = 1: trace norm.

• ‖W ‖p,q :=

(∑
k

(∑
j |Wj,k |p

)q/p)1/q

• For function class H and some set of data points x1, . . . , xm ∈ X , we
define the (empirical) Rademacher complexity R̂m(H) as

R̂m(H) = Eε

[
sup
h∈H

1

m

m∑
i=1

εih (xi )

]

where ε = (ε1, . . . , εm) is a vector uniformly distributed in {−1,+1}m.



Model

• Domain: X = {x : ‖x‖ ≤ B}
• Model: Standard Fully connected DNN (real function)

x 7→Wdσd−1 (Wd−1σd−2 (. . . σ1 (W1x)))

where each Wj is a parameter matrix, and each σj is some fixed Lipschitz
continuous function.

• d : depth, h: width ( maximal row or column dim of W1, · · · ,Wd

• ∀j , σj has a Lipschitz constant of at most 1, positive-homogeneous
(σ(αz) = ασ(z) for all α ≥ 0 and z ∈ R)

• W r
b : shorthand for the matrix tuple {Wb,Wb+1, . . . ,Wr}

• NW r
b
: function from layers b through r :

x 7→Wrσr−1 (Wr−1σr−2 (. . . σb (Wbx)))



From exponential to polynomial depth dependence

• Compute the Rademacher complexity: using ‘peeling’ argument: reduce
depth r networks to depth r − 1 networks.

Eε sup
h∈Hd

1

m

m∑
i=1

εih (xi ) = Eε sup
h∈Hd−1Wd :‖Wd‖F≤MF (d)

1

m

m∑
i=1

εiWdσ (h (xi ))

can be upper bounded by MF (d) · Eε suph∈Hd−1

∥∥ 1
m

∑m
i=1 εiσ (h (xi ))

∥∥ ≤
2MF (d) · Eε suph∈Hd−1

‖ 1
m

∑m
i=1 εih (xi ))‖

• Factor 2 is generally unavoidable(Ledoux and Talagrand, 1991)

• By Jensen’s Inequality,

R̂m(H) =
1

λ
log exp

(
λ · Eε sup

h∈H

m∑
i=1

εih (xi )

)

≤ 1

λ
log

(
Eε sup

h∈H
exp

(
λ

m∑
i=1

εih (xi )

))



From exponential to polynomial depth dependence

Theorem 1. Let Hd be the class of real-valued networks of depth d over the
domain X , where each parameter matrix Wj has Frobenius norm at most
MF (j), and let σ be a 1-Lipschitz, positive-homogeneous activation function
which is applied element-wise. Then

R̂m (Hd) ≤ 1

m

d∏
j=1

MF (j) · (
√

2 log(2)d + 1)

√√√√ m∑
i=1

‖xi‖2

≤
B(
√

2 log(2)d + 1)
∏d

j=1 MF (j)
√
m



From exponential to polynomial depth dependence

• Thm 1 can be applied to the infinity norm

Theorem 2. Let Hd be the class of real-valued networks of depth d over the
domain X , where ‖Wj‖1,∞ ≤ M(j), and let σ be a 1-Lipschitz activation
function with σ(0) = 0, applied element-wise. Then

R̂m (Hd) ≤ 1

m

d∏
j=1

MF (j) · (
√

2 log(2)d + 1)

√√√√ m∑
i=1

‖xi‖2

≤
B(
√

2 log(2)d + 1)
∏d

j=1 MF (j)
√
m



From Depth Dependence to Independence

Theorem 3. For any p ∈ [1,∞), any network NW d
1

such that
∏d

j=1 ‖Wj‖ ≥ Γ

and
∏d

j=1 ‖Wj‖p ≤ M and for any r ∈ {1, . . . , d}, there exists another network
NW̃ d

1
(of the same depth and layer dimensions) with the following properties:

• W̃ d
1 =

{
W̃1, . . . , W̃d

}
is identical to W d

1 , except for the parameter matrix

W̃r′ in the r ′ − th layer, for some r ′ ∈ {1, 2, . . . , r}. The matrix W̃r′ is of
rank at most 1 , and equals suv> where s, u, v are some leading singular
value and singular vectors pairs of Wr′

• supx∈X

∥∥∥NW d
1

(x)− NW̃ d
1

(x)
∥∥∥ ≤ B

(∏d
j=1 ‖Wj‖

)(
2p log(M/Γ)

r

)1/p

(Only one parameter is different and output is similar)



From Depth Dependence to Independence

Theorem 4. Let H be a class of fiuctions from Euclidean space to [−R,R]. Let
FL,a be the class of of L -Lipschitz functions from [−R,R] to R, such that
f (0) = a for some fixed a. Letting FL,a ◦ H := {f (h(·)) : f ∈ FL,a, h ∈ H}, its
Rademacher complexity satisfies

R̂m (FL,a ◦ H) ≤ cL

(
R√
m

+ log3/2(m) · R̂m(H)

)
where c > 0 is a universal constant.



From Depth Dependence to Independence

Theorem 5. Consider the following hypothesis class of networks on
X = {x : ‖x‖ ≤ B} :

H =

NW d
1

:

∏d
j=1 ‖Wj‖ ≥ Γ

∀j ∈ {1 . . . d},Wj ∈ Wj ,max

{
‖Wj‖
M(j)

,
‖Wj‖p
Mp(j)

}
≤ 1}


for some parameters p, Γ ≥ 1, {M(j),Mp(j),Wj}dj=1 . Also, for any
r ∈ {1, . . . , d}, define

Hr =

NW r
1

::

NW r
1

maps to R
∀j ∈ {1 . . . r − 1},Wj ∈ Wj

∀j ∈ {1 . . . r},max

{
‖Wj‖
M(j)

,
‖Wj‖p
Mp(j)

}
≤ 1





From Depth Dependence to Independence

Finally, for m > 1, let ` ◦ H = {(`1 (h (x1))) : h ∈ H} , where `1, . . . , `m are
real-valued loss functions which are 1

γ
-Lipschitz and satisfy

`1(0) = ` = `m(0) = a, for some a ∈ R. Assume that |a| ≤ B
∏d

j=1 M(j)

γ

Then the Rademacher complexity R̂m(` ◦ H) is upper bounded by

cB
∏d

j=1 M(j)

γ
min

r∈{1,...,d}

{
log3/2(m)

B
· max
r′∈{1,...,r}

R̂m (Hr′)∏r′

j=1 M(j)
+

 log
(

1
Γ

∏d
j=1 Mp(j)

)
r

1/p

+
1 +
√

log r√
m


where c > 0 is a universal constant.



From Depth Dependence to Independence

Corr 1. Let H be the class of depth-d neural networks, where each parameter
matrix Wj satisfies ‖Wj‖F ≤ MF (j), and with 1-Lipschitz,
positive-homogeneous, element-wise activation functions. Assuming the loss
function ` and H satisfy the conditions of Thm. 5 (with the sets Wj being
unconstrained, it holds that

R̂m(` ◦H) ≤ O

BΠd
j=1MF (j)

γ
·min

 log3/4(m)
√

log
(

1
Γ

Πd
j=1MF (j)

)
m1/4

,

√
d

m




where log(z) := max{1, log(z)}



From Depth Dependence to Independence

lgnoring logarithmic factors and replacing the min by its first argument, the
bound in the corollary is at most

Õ

B
∏d

j=1 MF (j)

γ

√√√√ log
(

1
Γ

∏d
j=1 MF (j)

)
√
m

)

Assuming
∏

j MF (j) and
∏

j MF (j)/Γ are bounded by a constant, we get a
bound which does not depend on the width or depth of the network.



Lower Bound for Schatten Norms

Thm 7. Let H be the class of depth-d, width-h neural networks, where each
parameter matrix Wj with respect to which satisfies ‖Wj‖p ≤ Mp(j) for some
Schatten p−norm ‖ · ‖p (and where use the convention that p =∞ refers to
the spectral norm). Then there exists a choice of 1

γ
−Lipschitz loss ` and data

points x1, . . . , xm ∈ X with respect to which

R̂m(` ◦ H) ≥ Ω

B
∏d

j=1 Mp(j) · hmax
{

0, 1
2
− 1

p

}
γ
√
m




