Data Augmentation Reviews

Presenter: Sarah Kim 2019.09.09

1. Mixup (2017)

2. SMOTE (2002)

3. Dataset augmentation in feature space (2017)

4. Unsupervised Data Augmentation for Consistency Training (2019)

1. mixup: Beyond Empirical Risk Minimization

- Neural networks trained with ERM is hard to explain or provide generalization on testing distribution that differ only slightly from the training data.
- ▶ Data augmentation is one of methods to solve this issue and assumes that the examples in the vicinity share the same class.
- Mixup is a data augmentation method using convex combinations of examples and their labels.

1. mixup: Beyond Empirical Risk Minimization

Mixup constructs virtual training examples

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j$$
, where x_i , x_j are raw input vectors
$$\tilde{y} = \lambda y_i + (1 - \lambda) y_j$$
, where y_i , y_j are one-hot label encodings

where

- (x_i, y_i) and (x_j, y_j) are two examples drawn at random from training data;
- $\lambda \sim \text{Beta}(\alpha, \alpha) \text{ for } \alpha \in (0, \infty).$
- ▶ The mixup hyperparameter α controls the strength of interpolation, recovering the ERM principle as $\alpha \to 0$.

1. mixup: Beyond Empirical Risk Minimization

Simulation results

	Model	ERM	Mix-up
CIFAR10	ResNet	5.6 (6.0)	4.2 (4.0)
	WideResNet	3.8 (4.31)	2.7 (3.25)
	DenseNet	3.7	2.7
CIFAR100	ResNet	25.6	21.1
	WideResNet	19.4	17.5
	DenseNet	19.0	16.8

Table 1: Test error rates(%) for the CIFAR 10 experiments using mix-up augmentation. (\cdot) denotes my simulation results.

✓ Apply to another dataset and another model

1. mixup: Beyond Empirical Risk Minimization Discussion

- We find that convex combinations of three or more examples with weights sampled from a Dirichlet distribution does not provide further gain.
- Interpolating only between inputs with equal label did not lead to the performance gains.
- Mixup reduces the memorization of corrupt labels, increases the robustness to adversarial examples.

2. SMOTE: Synthetic Minority Over-sampling TEchnique Method

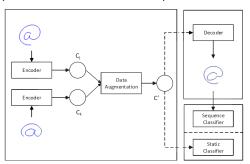
- SMOTE is an over-sampling method that the minority class is over-sampled by creating synthetic examples for imbalanced classification problem.
- ▶ Method: For a sample x in the minority class, $k \in \mathbb{N}$,
 - 1. calculate k minority class nearest neighbors of x;
 - 2. choose a random sample between k-NN of x, denote by x';
 - 3. generate synthetic examples by interpolation as following:

$$\tilde{x} = x + \lambda(x' - x)$$

where λ is a random number between 0 and 1.

3. Dataset augmentation in feature space Method

We propose a data augmentation method that perform the transformation not in input space, but in a learned feature space.



3. Dataset augmentation in feature space Method

▶ For each sample in the dataset, find its *k* nearest neighbours in feature space which share its class label. For each pair of neighbouring context vectors, a new context vector can be generated as:

(Interpolation)
$$c' = c_j + \lambda(c_k - c_j)$$
 for $\lambda \in [0, 1]$
(Extrapolation) $c' = c_j + \lambda(c_j - c_k)$ for $\lambda \in [0, \infty)$

Figure 1: Experiment results

4. Unsupervised Data Augmentation for Consistency Training Introduction

- Data augmentation method to unlabeled data in a semi-supervised learning setting
- Unsupervised Data Augmentation (UDA) encourages the model predictions to be consistent between an unlabeled example and an augmented unlabeled example:

Minimize a divergence
$$\mathcal{D}\left(p_{\theta}(y|x)\|p_{\theta}(y|\hat{x})\right)$$
, (2)

where $p_{\theta}(y|x)$ is the output distribution for a given input x and a model with parameter θ , and \hat{x} is a pertubed version of x.

4. Unsupervised Data Augmentation for Consistency Training

- We focus on classification problems.
- Notations
 - L, U: the sets of labeled and unlabeled examples resp.
 - (x_i, y_i) : an input, target pair for i = 1, ..., |L|
 - $ightharpoonup p_{\theta}(y|x_i)$: a learning model with model parameters θ for a given x_i
 - $q(\hat{x}_i|x_i)$: the augmentation transformation based on an original example x_i
- Objective function:

$$\mathcal{J}(\theta) = \left\{ -\frac{1}{|L|} \sum_{(x_i, y_i) \in L} y_i^{\top} \log p_{\theta}(y|x_i) + \frac{\lambda}{|U|} \sum_{x_i \in U} \mathcal{D}_{\mathsf{KL}} \left(p_{\tilde{\theta}}(y|x_i) \| p_{\theta}(y|\hat{x}_i) \right) \right\}, \tag{3}$$

where $\hat{x} \sim q(\hat{x}|x)$, $\tilde{\theta}$ is a fixed copy of the current parameters θ ,

 $\lambda > 0$ is a tuning parameter (default: 1).

4. Unsupervised Data Augmentation for Consistency Training

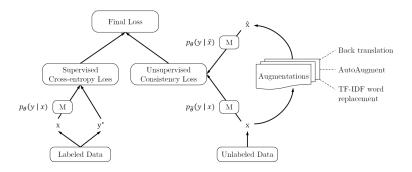


Figure 2: Training objective for UDA, where M is a model that predicts a disribution of y given x.

4. Unsupervised Data Augmentation for Consistency Training Experiments

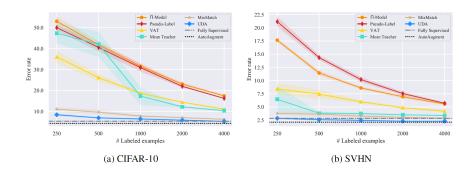


Figure 3: Comparison with semi-supervised learning methods.

Reference

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique.

Journal of artificial intelligence research, 16, 321-357.

DeVries, T., & Taylor, G. W. (2017).

Dataset augmentation in feature space.

arXiv preprint arXiv:1702.05538.

Xie, Q., Dai, Z., Hovy, E., Luong, M. T., & Le, Q. V. (2019).

Unsupervised data augmentation.

arXiv preprint arXiv:1904.12848.