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[da2vec

» Dense vector representations + interpretable representaions over

documents(topics)

» Dense vector representations of words, documents and topics are in same

embedding spaces.

» Document vectors are expressed mixture of topic vectors

(d1 =0.9t; + 0.1t2)
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word2vec(skip gram)

foxé

» Using pivotal word, predict words in fixed window size.
» n : number of words, d : embedding dimension.
» Two weight matrix Wixd, Udxn

» Rows of the W are dense representations of words.
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word2vec(skip gram)
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word2vec(skip gram)

» Two weight matrix Wy, Udxn
» The training objective of the Skip-gram model
1 n
~> D logp(winw)
i=1 —c<t<c,t#0
» P(w;j|w;) is defined as

exp (W; - 4j)
> exp (Wi - i)

Wi, Uj @ ith row of W, jth column of U.

P(wjlwi) =
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word2vec(skip gram with negative sampling)

» When number of word is large, skipgram formulation is impractical.

v

Sample N(5~20) number of words which are not in window size.

v

The word w; is drawing with probability,

f(W,‘)3/4

P(w;) = F(wi)3/

Zi:w,-ewindow
.f(w;) = frequency of word w; / total frequency of words
» The training objective function :

= DD Sy

i=1 —c<t<c,t#0

\

Lijj is defined as

N
log o(w; - ;) + Z log o(—Wj - Uneg,i)

=1
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Word vectors

» Similary to word2vec, using pivot word predict target word in window size.

> wj; indicates certain row of the matrix W which corresponding to ith words

in jth document.

» i indicates certain column of the matrix U which corresponding to ith

words in jth document.

> |t uses a context vector, which is a sum of pivotal word vectors and

document vector (¢ = wjj + d;)
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Document vectors

» Document vectors are expressed mixture of topic vectors

» K : number of topics, J : number of documents

v

Each documents has document weight (hj1, ..., hix)

v

Through softmax transform, (pj1,- .., pjn), Zszl pik =1

» Document vector (d;):

JJ":ijE)+Pj1F1+...+ijE;<+---+PjKFK
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Topic vectors

Document weight

@

Document proportion

topics

: Document vector
nidden wmics

» Columns of embedding matrix are dense representation of topics.

» Similarity between word and topic can be calculated.

9/16



SGNS loss

» The total loss

J

YR S DD S
j=1 i=1 —c<t<c,t#i

neg

> The sum of the Skipgram Negative Sampling Loss(SGNS) L7

N
L3 = logo(&j - Gy) + Y log o(—C - lines.1)

iyt
I=1

— nj : number of words in jth document

— c is window size.

N : Negative sample size.

— Cj : a context vector, sum of pivot word vectors and document vector

(& = Wy + d))

10/16



Dirichlet-likelihood loss

» Dirichlet-likelihood £7:

K
£l = )\ZZ(CM — 1) log pj«
j=1 k=1
» This simple likelihood encourages
— Document has sparse pj,k =1,...,K when a < 1
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Figure: architecture
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Effect of sum of word vector and document vector

» For word 'Germany’', neighboring words are predicted similar such as
'France’, 'Spain’, and 'Austria’.
» if the document about airlines, neighboring words could be 'Lufthansa’,

"Condor Flugdienst’, and 'Aero Lloyd’

» This models can consider document-wide relationships, while still

leveraging local inter-word relationships.
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Experiments

» Twenty Newsgroups

Topic Label “Space” “Encryption” | “X Windows™ | “Middle East”

Top tokens astronomical | encryption mydisplay Armenian
Astronomy wiretap xlib Lebanese
satellite encrypt window Muslim
planetary ESCrow cursor Turk
telescope Clipper pixmap sy

Topic Coherence | 0.712 0.675 0472 0.615

» The most similar words are listed

» Closely related newsgroup, 'sci.space’, 'sci.crypt’, 'comp.windows.x" and

"talk.politics.mideast’
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Experiments

technology and entrepreneurship.

» Hacker News Comments corpus

» Social content-voting website and

community whose focus is largely on

“Housing Issues™ | “Internet Portals™ | “Bitcoin™ | “Compensation”™ | “Gadget Hardware”
more housing DDG. bte current salary the Surface Pro
basic income Bing bitcoins more equity HDMI

new housing Google+ Mt. Gox | vesting glossy screens
house prices DDG MtGox equity Mac Pro

short-term rentals | iGoogle Gox vesting schedule | Thunderbolt

Figure: The inferred topic labed is shonw in the first row
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Experiments
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Figure: The most similar words for given tokens

Facebook + Amazon

Query Result
California + technology Silicon Valley
digital + currency Bitcoin
Javascript - browser + | Node.js
server
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NLP - text + image

computer vision
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Figure: Examples of linear relationships
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