Mixing Dirichlet Topic Models and Word Embeddings to Make Ida2vec

Christopher Moody

Presenter : 이종진

Seoul National University

ga0408@snu.ac.kr

January 07, 2020

▲□▶ ▲□▶ ▲□▶ ★□▶ □ □ のへで

1/16

- Dense vector representations + interpretable representations over documents(topics)
- Dense vector representations of words, documents and topics are in same embedding spaces.

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

Document vectors are expressed mixture of topic vectors

 $(d_1 = 0.9t_1 + 0.1t_2)$

word2vec(skip gram)

sally said the **fox** jumped over the

- Using pivotal word, predict words in fixed window size.
- n : number of words, d : embedding dimension.
- Two weight matrix $W_{n \times d}$, $U_{d \times n}$
- Rows of the W are dense representations of words.

イロト (雪) (ヨ) (ヨ) (ヨ) ()

word2vec(skip gram)

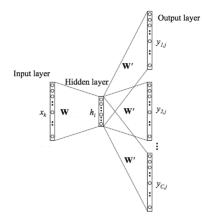


Figure: word2vec

word2vec(skip gram)

- Two weight matrix $W_{n \times d}$, $U_{d \times n}$
- The training objective of the Skip-gram model

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{-c\leq t\leq c,t\neq 0}\log p(w_{i+t}|w_i)$$

• $P(w_j|w_i)$ is defined as

$$P(w_j|w_i) = \frac{\exp\left(\vec{w}_i \cdot \vec{u}_j\right)}{\sum_{j=1}^{n} \exp\left(\vec{w}_i \cdot \vec{u}_j\right)}$$

▲□▶ ▲□▶ ▲□▶ ★□▶ □ □ のへで

, $\vec{w_i}$, $\vec{u_j}$: ith row of W, jth column of U.

word2vec(skip gram with negative sampling)

- When number of word is large, skipgram formulation is impractical.
- ▶ Sample N(5~20) number of words which are not in window size.
- The word w_i is drawing with probability,

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{i:w_i \notin \text{window}} f(w_i)^{3/4}}$$

 $f(w_i) =$ frequency of word $w_i /$ total frequency of words

The training objective function :

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{-c\leq t\leq c,t\neq 0}\mathcal{L}_{i.i+t}$$

L_{ij} is defined as

$$\log \sigma(\vec{w_i} \cdot \vec{u_j}) + \sum_{l=1}^N \log \sigma(-\vec{w_i} \cdot \vec{u_{neg,l}})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 つへぐ

Word vectors

- Similary to word2vec, using pivot word predict target word in window size.
- *w*_{ij} indicates certain row of the matrix W which corresponding to ith words in jth document.
- \vec{u}_{ij} indicates certain column of the matrix U which corresponding to ith words in jth document.
- ► It uses a context vector, which is a sum of pivotal word vectors and document vector $(\vec{c}_{ij} = \vec{w}_{ij} + \vec{d}_j)$

・ロト ・ 日 ・ エ ・ ・ 日 ・ ・ つ へ つ ・

Document vectors

- Document vectors are expressed mixture of topic vectors
- K : number of topics, J : number of documents
- Each documents has document weight (h_{j1},..., h_{jK})
- Through softmax transform, $(p_{j1}, \ldots, p_{jn}), \sum_{k=1}^{K} p_{jk} = 1$
- **b** Document vector $(\vec{d_j})$:

$$ec{d_j} = p_{j0} ec{t_0} + p_{j1} ec{t_1} + \ldots + p_{jk} ec{t_k} + \ldots + p_{jK} ec{t_K}$$

・ロト ・ 日 ・ エ ・ ・ 日 ・ ・ つ へ つ ・

8/16

Topic vectors

Columns of embedding matrix are dense representation of topics.

Similarity between word and topic can be calculated.

SGNS loss

The total loss

$$\mathcal{L} = \mathcal{L}^{d} + \sum_{j=1}^{J} \sum_{i=1}^{n_j} \sum_{-c \leq t \leq c, t \neq i} \mathcal{L}_{ijt}^{neg}$$

The sum of the Skipgram Negative Sampling Loss(SGNS) L^{neg}_{iit}

$$\mathcal{L}_{ijt}^{neg} = \log \sigma(ec{c}_{ij} \cdot ec{u}_{tj}) + \sum_{l=1}^{N} \log \sigma(-ec{c}_{ij} \cdot ec{u}_{neg,l})$$

- n_i : number of words in jth document
- c is window size.
- N : Negative sample size.
- \vec{c}_{ij} : a context vector, sum of pivot word vectors and document vector $(\vec{c}_{ij} = \vec{w}_{ij} + \vec{d}_j)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

10/16

Dirichlet-likelihood loss

▶ Dirichlet-likelihood \mathcal{L}^d :

$$\mathcal{L}^{d} = \lambda \sum_{j=1}^{J} \sum_{k=1}^{K} (\alpha - 1) \log p_{jk}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

11/16

This simple likelihood encourages

- Document has sparse $p_{jk}, k = 1, \ldots, K$ when $\alpha < 1$

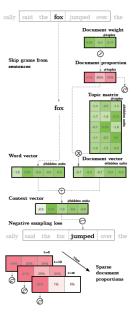


Figure: architecture

Effect of sum of word vector and document vector

- For word 'Germany', neighboring words are predicted similar such as 'France', 'Spain', and 'Austria'.
- if the document about airlines, neighboring words could be 'Lufthansa', 'Condor Flugdienst', and 'Aero Lloyd'

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

13/16

This models can consider document-wide relationships, while still leveraging local inter-word relationships.

Experiments

Twenty Newsgroups

Topic Label	"Space"	"Encryption"	"X Windows"	"Middle East"
Top tokens	astronomical	encryption	mydisplay	Armenian
	Astronomy	wiretap	xlib	Lebanese
	satellite	encrypt	window	Muslim
	planetary	escrow	cursor	Turk
	telescope	Clipper	pixmap	sy
Topic Coherence	0.712	0.675	0.472	0.615

- The most similar words are listed
- Closely related newsgroup, 'sci.space', 'sci.crypt', 'comp.windows.x' and 'talk.politics.mideast'

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Experiments

- Hacker News Comments corpus
- Social content-voting website and community whose focus is largely on technology and entrepreneurship.

"Housing Issues"	"Internet Portals"	"Bitcoin"	"Compensation"	"Gadget Hardware"
more housing	DDG.	btc	current salary	the Surface Pro
basic income	Bing	bitcoins	more equity	HDMI
new housing	Google+	Mt. Gox	vesting	glossy screens
house prices	DDG	MtGox	equity	Mac Pro
short-term rentals	iGoogle	Gox	vesting schedule	Thunderbolt

Figure: The inferred topic labed is shonw in the first row

< □ > < 큔 > < 볼 > < 볼 > 별 = · · ○ < ♡ < ○ 15/16

Experiments

Artificial sweeteners	Black holes	Comic Sans	Functional Programming	San Francisco
glucose	particles	typeface	FP	New York
fructose	consciousness	Arial	Haskell	Palo Alto
HFCS	galaxies	Helvetica	OOP	NYC
sugars	quantum mechanics	Times New Roman	functional languages	New York City
sugar	universe	font	monads	SF
Soylent	dark matter	new logo	Lisp	Mountain View
paleo diet	Big Bang	Anonymous Pro	Clojure	Seattle
diet	planets	Baskerville	category theory	Los Angeles
carbohydrates	entanglement	serif font	00	Boston

Figure: The most similar words for given tokens

Query	Result	
California + technology	Silicon Valley	
digital + currency	Bitcoin	
Javascript - browser +	Node.js	
server		
Mark Zuckerberg -	Jeff Bezos	
Facebook + Amazon		
NLP - text + image	computer vision	
Snowden - United States	Assange	
+ Sweden		
Surface Pro - Microsoft +	Kindle	
Amazon		

Figure: Examples of linear relationships