S. Han et al. (2015 NIPS) C. Louizos et al. (2018 ICLR) E. Tartaglione et al. (2018 NIPS) J. Frankle and M. Carbin (2019 arXiv) Anonymous authors (ICL

# Learning Sparse DNN Architecture

Presenter: Gyuseung Baek

January 7, 2020

S. Han et al. (2015 NIPS) C. Louizos et al. (2018 ICLR) E. Tartaglione et al. (2018 NIPS) J. Frankle and M. Carbin (2019 arXiv) Anonymous authors (ICL

#### Introduction

 Neural Networks are both computationally intensive and memory intensive, making them difficult to deploy on embedded systems

<ロト < 部ト < 注ト < 注ト = うへで</p>

Simple structure may achieve better performance

# Learning both Weights and Connections for Efficient Neural Networks

- Simple way to achieve sparse network: prune redundant weights.  $(|w| < T \rightarrow w = 0)$
- Simple pruning hinders model performance poorly. Add retraining.
- Pruning algorithm
  - 1 Train the network as usual.
  - Prune the unimportant connections.
  - 8 Retrain the network to fine tune the weights of the remaining connections.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

## Learning both Weights and Connections for Efficient Neural Networks

- Regularization: use L2 rather than L1. (performance issue)
- Retraining is iteratively implemented. (As many as possible)
- Pruning threshold: *C*× (std. of layer's weights).
- After pruning, learning rate is decayed

### Learning both Weights and Connections for Efficient Neural Networks

| Network              | Top-1 Error | Top-5 Error | Parameters | Compression<br>Rate |
|----------------------|-------------|-------------|------------|---------------------|
| LeNet-300-100 Ref    | 1.64%       | -           | 267K       |                     |
| LeNet-300-100 Pruned | 1.59%       | -           | 22K        | 12 	imes            |
| LeNet-5 Ref          | 0.80%       | -           | 431K       |                     |
| LeNet-5 Pruned       | 0.77%       | -           | 36K        | 12	imes             |
| AlexNet Ref          | 42.78%      | 19.73%      | 61M        |                     |
| AlexNet Pruned       | 42.77%      | 19.67%      | 6.7M       | $9 \times$          |
| VGG-16 Ref           | 31.50%      | 11.32%      | 138M       |                     |
| VGG-16 Pruned        | 31.34%      | 10.88%      | 10.3M      | $13 \times$         |

| Layer   | Weights    | FLOP  | Act% | Weights% | FLOP% |
|---------|------------|-------|------|----------|-------|
| conv1_1 | 2K         | 0.2B  | 53%  | 58%      | 58%   |
| conv1_2 | 37K        | 3.7B  | 89%  | 22%      | 12%   |
| conv2_1 | 74K        | 1.8B  | 80%  | 34%      | 30%   |
| conv2_2 | 148K       | 3.7B  | 81%  | 36%      | 29%   |
| conv3_1 | 295K       | 1.8B  | 68%  | 53%      | 43%   |
| conv3_2 | 590K       | 3.7B  | 70%  | 24%      | 16%   |
| conv3_3 | 590K       | 3.7B  | 64%  | 42%      | 29%   |
| conv4_1 | 1 <b>M</b> | 1.8B  | 51%  | 32%      | 21%   |
| conv4_2 | 2M         | 3.7B  | 45%  | 27%      | 14%   |
| conv4_3 | 2M         | 3.7B  | 34%  | 34%      | 15%   |
| conv5_1 | 2M         | 925M  | 32%  | 35%      | 12%   |
| conv5_2 | 2M         | 925M  | 29%  | 29%      | 9%    |
| conv5_3 | 2M         | 925M  | 19%  | 36%      | 11%   |
| fc6     | 103M       | 206M  | 38%  | 4%       | 1%    |
| fc7     | 17M        | 34M   | 42%  | 4%       | 2%    |
| fc8     | 4M         | 8M    | 100% | 23%      | 9%    |
| total   | 138M       | 30.9B | 64%  | 7.5%     | 21%   |

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

### Learning both Weights and Connections for Efficient Neural Networks



## Learning Sparse Neural Networks Through L<sub>0</sub> Regularization

- $L_0$  regularizer is non-differentiable latent variable and smooth binary dist'n
- $L_0$  penalty training: find  $\theta^*$  as

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i; \theta), y_i) + \lambda \|\theta\|_0$$

• supposse  $\theta = \tilde{\theta} \cdot z, z \in \{0, 1\}^{|\theta|}$ . by letting  $q(z_j | \pi_j) = Ber(\pi_j)$ ,  $L_0$  penalty training is same as finding  $\tilde{\theta}^*, \pi^*$  as

$$\tilde{\theta}^*, \pi^* = \operatorname*{argmin}_{\tilde{\theta}, \pi} \frac{1}{n} \mathbb{E}_{q(z|\pi)} \left[ \sum_{i=1}^n \ell(f(x_i; \tilde{\theta} \cdot z), y_i) \right] + \lambda \sum_{j=1}^{|\theta|} \pi_j$$

## Learning Sparse Neural Networks Through L<sub>0</sub> Regularization

• lather than  $Ber(\pi_j)$ (discrete), use continuous function

$$s \sim q(\cdot | \phi), z = min(1, max(0, s)) = g(s)$$

version of smooth the binary Bernoulli gates z:

$$ilde{ heta}^*, \phi^* = \operatorname*{argmin}_{ ilde{ heta},\pi} rac{1}{n} \mathbb{E}_{q(s|\phi)} \left[ \sum_{i=1}^n \ell(f(x_i; ilde{ heta} \cdot g(s)), y_i) 
ight] + \lambda \sum_{j=1}^{| heta|} (1 - Q(s_j \le 0|\phi_j))$$

wher Q: cdf of q.

- choice of q:  $s = \overline{s}\xi + (1 \overline{s})\gamma, \overline{s} = Sigmoid((\log \frac{\alpha u}{1 u})/\beta), u \sim \mathcal{U}(0, 1)$
- final solution:

$$\hat{z} = g(Sigmoid(\log lpha)(\xi - \gamma) + \gamma), \theta^* = \tilde{ heta}^* \cdot \hat{z}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

## Learning Sparse Neural Networks Through L<sub>0</sub> Regularization

#### Experiments

| Network & size | Method                             | Pruned architecture | Error (%) |
|----------------|------------------------------------|---------------------|-----------|
| MLP            | Sparse VD (Molchanov et al., 2017) | 512-114-72          | 1.8       |
| 784-300-100    | BC-GNJ (Louizos et al., 2017)      | 278-98-13           | 1.8       |
|                | BC-GHS (Louizos et al., 2017)      | 311-86-14           | 1.8       |
|                | $L_{0_{hc}}, \lambda = 0.1/N$      | 219-214-100         | 1.4       |
|                | $L_{0_{hc}}, \lambda$ sep.         | 266-88-33           | 1.8       |
| LeNet-5-Caffe  | Sparse VD (Molchanov et al., 2017) | 14-19-242-131       | 1.0       |
| 20-50-800-500  | GL (Wen et al., 2016)              | 3-12-192-500        | 1.0       |
|                | GD (Srinivas & Babu, 2016)         | 7-13-208-16         | 1.1       |
|                | SBP (Neklyudov et al., 2017)       | 3-18-284-283        | 0.9       |
|                | BC-GNJ (Louizos et al., 2017)      | 8-13-88-13          | 1.0       |
|                | BC-GHS (Louizos et al., 2017)      | 5-10-76-16          | 1.0       |
|                | $L_{0_{hc}}, \lambda = 0.1/N$      | 20-25-45-462        | 0.9       |
|                | $L_{0_{hc}}, \lambda$ sep.         | 9-18-65-25          | 1.0       |

(ロト (個) (注) (注) (注) (三) (○) (○)

- Sensitivity of weights: the relation between wight variation and output variation.
- Low sensitivity = Not important
- Make low sensitivity weights toward zero by regularized learning. (Hard thresholding)

- Model output  $\mathbf{y} = (y_1, \cdots, y_C)$
- Sensitivity of weight w

$$S(\mathbf{y}, w) = \sum_{k=1}^{C} \alpha_k \left| \frac{\partial y_k}{\partial w} \right|$$

bounded insensitivity

$$ar{\mathcal{S}}_b(\mathbf{y},w) = max[0,1-\mathcal{S}(\mathbf{y},w)] \in [0,1]$$

Update rule

$$w^{t} := w^{t-1} - \eta \frac{\partial L}{\partial w} - \lambda w^{t-1} \bar{S}_{b}(\mathbf{y}, w^{t-1})$$

by Holder inequaltiy,

$$\left|\frac{\partial L}{\partial w}\right| \le \left\|\frac{\partial \mathbf{y}}{\partial w}\right\|_{1}$$

If gradient term is large, insensitivity term became small. If gradient term is small, insensitivity term dominates whole update.

Using insensitivity term is equal to using such regularization term

$$R(\theta) = \sum_{w} R(w) = \sum_{w} \frac{w^2}{2} (1 - S(\mathbf{y}, w))$$

| Table 1: LeNet500 network trained over the MINIST dataset |       |           |           |           |           |                     |       |  |  |
|-----------------------------------------------------------|-------|-----------|-----------|-----------|-----------|---------------------|-------|--|--|
|                                                           |       | Remaining | parameter | <b>'S</b> | Memory    | $ \theta $          | Top-1 |  |  |
|                                                           | FC1   | FC2       | FC3       | Total     | footprint | $ \theta_{\neq 0} $ | error |  |  |
| Han et al. 9                                              | 8%    | 9%        | 26%       | 21.76k    | 87.04kB   | 12.2x               | 1.6%  |  |  |
| Proposed (Sunspec)                                        | 2.25% | 11.93%    | 69.3%     | 9.55k     | 34.2kB    | 27.87x              | 1.65% |  |  |
| Proposed (S <sup>spec</sup> )                             | 4.78% | 24.75%    | 73.8%     | 19.39k    | 77.56kB   | 13.73x              | 1.56% |  |  |
| Louizos et al. [13]                                       | 9.95% | 9.68%     | 33%       | 26.64k    | 106.57kB  | 12.2x               | 1.8%  |  |  |
| SWS[10]                                                   | N/A   | N/A       | N/A       | 11.19k    | 44.76kB   | 23x                 | 1.94% |  |  |
| Sparse VD[16]                                             | 1.1%  | 2.7%      | 38%       | 3.71k     | 14.84kB   | 68x                 | 1.92% |  |  |
| DNS 24                                                    | 1.8%  | 1.8%      | 5.5%      | 4.72k     | 18.88kB   | 56x                 | 1.99% |  |  |
| Proposed (Sunspec)                                        | 0.93% | 1.12%     | 5.9%      | 2.53k     | 10.12kB   | 103x                | 1.95% |  |  |
| Proposed (S <sup>spec</sup> )                             | 1.12% | 1.88%     | 13.4%     | 3.26k     | 13.06kB   | 80x                 | 1.96% |  |  |

Table 1: LeNet300 network trained over the MNIST dataset

Table 2: LeNet5 network trained over the MNIST dataset

|                            |       | Remai | ning para | Memory | $ \theta $ | Top-1     |                     |       |
|----------------------------|-------|-------|-----------|--------|------------|-----------|---------------------|-------|
|                            | Conv1 | Conv2 | FC1       | FC2    | Total      | footprint | $ \theta_{\neq 0} $ | error |
| Han et al. 9               | 66%   | 12%   | 8%        | 19%    | 36.28k     | 145.12kB  | 11.9x               | 0.77% |
| Prop. (Sunspec)            | 67.6% | 11.8% | 0.9%      | 31.0%  | 8.43k      | 33.72kB   | 51.1x               | 0.78% |
| Prop. (S <sup>spec</sup> ) | 72.6% | 12.0% | 1.7%      | 37.4%  | 10.28k     | 41.12kB   | 41.9x               | 0.8%  |
| Louizos et al. 13          | 45%   | 36%   | 0.4%      | 5%     | 6.15k      | 24.6kB    | 70x                 | 1.0%  |
| SWS [10]                   | N/A   | N/A   | N/A       | N/A    | 2.15k      | 8.6kB     | 200x                | 0.97% |
| Sparse VD 16               | 33%   | 2%    | 0.2%      | 5%     | 1.54k      | 6.16kB    | 280x                | 0.75% |
| DNS 24                     | 14%   | 3%    | 0.7%      | 4%     | 3.88k      | 15.52kB   | 111x                | 0.91% |

Table 3: VGG16 network trained on the ImageNet dataset

|                            | Remaining parameters |       |        | Memory    | θ                   | Top-1  | Top-5  |
|----------------------------|----------------------|-------|--------|-----------|---------------------|--------|--------|
|                            | Conv                 | FC    | Total  | footprint | $ \theta_{\neq 0} $ | error  | error  |
| Han et al. 9               | 32.77%               | 4.61% | 10.35M | 41.4 MB   | 13.33x              | 31.34% | 10.88% |
| Prop. (Sunspec)            | 64.73%               | 2.9%  | 11.34M | 45.36 MB  | 12.17x              | 29.29% | 9.80%  |
| Prop. (S <sup>spec</sup> ) | 56.49%               | 2.56% | 9.77M  | 39.08 MB  | 14.12x              | 30.92% | 10.06% |

<ロト < 部ト < 注ト < 注ト = うへで</p>

# The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks

- Lottery Ticket Hypothesis: Every network has a subnetwork which can match the test accuracy of the original one after training for at most the same number of iterations (*j*).
- *j* is fixed by optimization methods.
- Identifying winning tickets
  - **1** Randomly initialize a nerual network  $f(x; \theta_0)$ .
  - **2** Train the network for *j* iterations, arriving at parameters  $\theta_j$ .
  - Solution Prune p% of the parameters in  $\theta_j$ , creating a mask m.
  - (2) Reset the remaining parameters to their values in  $\theta_0$ , creating the winning ticket.

#### The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks



- Various network pruning
  - After training (Han et al., 2015) long training time
  - During training (Louizos et al., 2018, Tartaglione et al., 2018)
  - Before training (Frankle and Carbin, 2019, SNIP algorithm, GraSP algorithm)

- Neural Tangent Kernel (NTK)
  - $\mathcal{X}$ : training set,  $\ell$ : loss ftn,  $n = |\mathcal{X}|$ . then  $\mathcal{Z} = f(\mathcal{X}; \theta) \in \mathbb{R}^{nC \times 1}$  and

$$f(\mathcal{X};\theta_{t+1}) = f(\mathcal{X};\theta_t) - \eta \Theta_t(\mathcal{X},\mathcal{X}) \nabla_{\mathcal{Z}} \ell$$

where the matrix  $\Theta_t(\mathcal{X}, \mathcal{X})$  is the Neural Tangent Kernel(NTK) at time step *t*:

$$\Theta_t(\mathcal{X},\mathcal{X}) = \nabla_\theta f(\mathcal{X};\theta_t) \nabla_\theta f(\mathcal{X};\theta_t)^\top \in \mathbb{R}^{nC \times nC}$$

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

 By NTK, training dynamics can be analyzed in closed form (arora et al., 2019):

$$\begin{split} \|\mathcal{Y} - \textit{f}(\mathcal{X}; \theta_t\|_2 &= \sqrt{\sum_{i=1}^n (1 - \eta \lambda_i)^{2t} (u_i^\top \mathcal{Y})^2 \pm \epsilon} \end{split}$$
 where  $\mathcal{Y} \in \mathbb{R}^{nC \times 1}$ ,  $\Theta_t = \Theta(\text{const.}) = \sum_{i=1}^n \lambda_i u_i u_i^\top$ 

- Algorithms for pruning before training (pruning ratio p, training data  $\mathcal{D}$ , initial:  $\theta_0$ 

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

- () select mini batch  $\mathcal{D}_m \sim \mathcal{D}$
- **2** choose selection function  $S(\theta_0) \in \mathbb{R}^{|\theta_0|}$
- **(3)** compute  $p_{\text{th}}$  percentile of  $S(\theta_0)$  as  $\tau$
- **4**  $m = S(\theta_0) < \tau \in \{0, 1\}^{\|\theta_0\|}$
- **5** train the network  $f_{m\cdot\theta}$  on  $\mathcal{D}$  until converges

- SNIP and GraSP
  - SNIP(Single-shot network pruning, Lee et al., 2018)

$$S(\theta_0) = \left\{ \lim_{\epsilon \to 0} \left| \frac{\ell(\theta_0) - \ell(\theta_0 + \epsilon \delta_q)}{\epsilon} \right| \right\}_{q=1}^{|\theta_0|} = = \left\{ \theta_q \frac{\partial \ell}{\partial \theta_q} \right\}_{q=1}^{|\theta_0|}$$

• GraSP(Gradient Signal preservation): gradient variation Let  $\Delta \ell(\theta) = \lim_{\epsilon \to 0} \frac{\ell(\theta_0 + \epsilon \nabla \ell(\theta)) - \ell(\theta)}{\epsilon} = \nabla \ell(\theta)^\top \nabla \ell(\theta)$  (directional derivative)

$$\begin{split} \tilde{S}(\delta) \simeq \Delta \ell(\theta_0 + \delta) - \Delta \ell(\theta_0) &= 2\delta^\top \nabla^2 \ell(\theta_0) \nabla \ell(\theta_0) = 2\delta^\top Hg\\ S(\theta_0) &= \tilde{S}(-\theta_0) \end{split}$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・ りゃく

#### Experiments

| Dataset                          |                          | CIFAR-10                        |                          |                                    | CIFAR-100                | 00                       |  |
|----------------------------------|--------------------------|---------------------------------|--------------------------|------------------------------------|--------------------------|--------------------------|--|
| Pruning ratio                    | 90%                      | 95%                             | 98%                      | 90%                                | 95%                      | 98%                      |  |
| VGG19 (Baseline)                 | 94.23                    | -                               | -                        | 74.16                              | -                        | -                        |  |
| SNIP (Lee et al., 2018)<br>GraSP | 93.63±0.06<br>93.30±0.14 | <b>93.43±0.20</b><br>93.04±0.18 | 92.05±0.28<br>92.19±0.12 | 72.84±0.22<br>71.95±0.18           | 71.83±0.23<br>71.23±0.12 | 58.46±1.10<br>68.90±0.47 |  |
| ResNet32 (Baseline)              | 94.80                    |                                 |                          | 74.64                              | -                        | -                        |  |
| SNIP (Lee et al., 2018)<br>GraSP | 92.59±0.10<br>92.38±0.21 | 91.01±0.21<br>91.39±0.25        | 87.51±0.31<br>88.81±0.14 | $68.89 \pm 0.45$<br>69.24 \pm 0.24 | 65.22±0.69<br>66.50±0.11 | 54.81±1.43<br>58.43±0.43 |  |

(ロト (個) (注) (注) (注) (三) (○) (○)