Gaussian Mixture Generative Adversarial Networks for Diverse Datasets, and the Unsupervised Clustering of Images Ben-Yosef and Weinshall, 2018

presented by Kun Woong Kim

2020.5.16.

<ロト < @ ト < E ト < E ト E の Q O 1/19

Contents

- 1. Introduction
- 2. GAN vs. GM-GAN
- 3. Unsupervised clustering

<ロ > < 母 > < 豆 > < 豆 > < 豆 > < 豆 > < こ > つ へ ? 2/19

- 4. Experiments
- 5. Conclusion
- 6. Appendix

Introduction

- The purpose is to improve the performance if the dataset includes many different classes.
- Real world image datasets are characterized by large inter-class and intra-class diversity in common.
- Here, the proposed method is that to use multi-modal distributions (Gaussian mixture) instead of unimodal distributions for the latent space.

<ロト < 部 ト < 臣 ト < 臣 ト 三 の Q (P 3/19)

Notation

- $\ensuremath{\mathcal{X}}$: The high dimensional data space
- $\ensuremath{\mathcal{Z}}$: The low dimensional latent space
- $p_{\mathcal{X}}$: The distribution of real training data
- $p_{\mathcal{Z}}$: The distribution of some $d\mbox{-dimensional}$ latent vector

<ロ > < 回 > < 臣 > < 臣 > 臣 の Q @ 4/19

- G : The generator
- D : The discriminator

GAN

- The *d*-dimensional latent variable z ∈ Z is distributed as Gaussian or Uniform,
 e.g. N(0, I_d) or U[-1, 1]^d which are unimodal distributions
- The target function

$$V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

to find G and D which optimize $\min_G \max_D V(D,G)$ The loss functions are :

$$L(G) = -\mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})}[\log D(G(\mathbf{z}))]$$
$$L(D) = -\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x})}[\log D(\mathbf{x})] - \mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

Gaussian Mixture GAN (GM-GAN)

Propose to use a mixture of Gaussians as a **multi-modal** distribution of latent variable $\mathbf{z} \in \mathbb{R}^d$.

$$p_{\mathcal{Z}}(\mathbf{z}) = \sum_{k=1}^{K} \alpha_k \cdot p_k(\mathbf{z})$$

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > ○ < ○ 6/19

where

K : the number of Gaussians in the mixture,

 α_k : categorical random variable ($\alpha_k = \frac{1}{K}$, $\forall k \in \{1, ..., K\}$), and $p_k(\mathbf{z})$: the multivariate Normal distribution $N(\mu_k, \Sigma_k)$

- Unsupervised GM-GAN
- Supervised GM-GAN

Unsupervised GM-GAN

Static : Fix the mean and variance of Gaussians.

Sample
$$\mu_k$$
 from $U[-c,c]^d$ and let $\Sigma_k = \sigma \cdot I_d$.

Dynamic : Learn the mean and variance of Gaussians.

• Sample $\epsilon \sim N(0, I_d)$, with re-parametrized $\mathbf{z} = A_k \epsilon + \mu_k$

• Learn
$$\mu_k \in \mathbb{R}^d$$
 and $\Sigma_k = A_k A_k^T \in \mathbb{R}^{d \times d}$.

Here,

 $c \in \mathbb{R}$ and $\sigma \in \mathbb{R}$ are hyper-parameters to be determined by the user.

The target function is exactly the same as the original one.

 $\min_{G}\max_{D}V(D,G)$

where

$$V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

Supervised GM-GAN

Objective :

To separate real samples of class \boldsymbol{i} from

- (1) fake samples of class i and
- (2) real samples of other class j, $j \neq i$.

Modify the unsupervised GM-GAN,

1. The output of *Discriminator* :

D returns a vector $o \in \mathbb{R}^N$ where N is the number of classes, each elements are the probability that the given sample is a real sample of class i.

2. The loss function

Supervised GM-GAN

We want G to generate a sample which will be classified by D as a real sample in class $f(k), \label{eq:generative}$

- where $f : \{1, \dots, K\} \to \{1, \dots, N\}$, a function mapping the index of Gaussian to class labels We expect :
 - 1. K = N : bijective, map each Gaussian to unique class
 - 2. K > N : surjective, map multiple Gaussians to the same class, can be useful when intra-class diversity appears.
 - 3. K < N : injective, map a single Gaussian to multiple classes
- ▶ $D(\mathbf{x})_j$ denotes the *j*th element of the vector $o \in \mathbb{R}^N$, for any $\mathbf{x} \in \mathcal{X}$.

Supervised GM-GAN

The loss functions are modified as :

$$L(G) = -\mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})} \Big[\log D(G(\mathbf{z}))_{f(y(\mathbf{z}))} + \sum_{m=1, m \neq f(y(\mathbf{z}))}^{N} \log(1 - D(G(\mathbf{z}))_m) \Big]$$

$$L(D) = -\mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})} \left[\sum_{m=1}^{N} \log(1 - D(G(\mathbf{z}))_m) \right]$$
$$-\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x})} \left[\log D(\mathbf{x})_{y(\mathbf{x})} + \sum_{m=1, m \neq y(\mathbf{x})}^{N} \log(1 - D(\mathbf{x})_m) \right]$$

where $y(\mathbf{x}) \in \{1, ..., N\}$ is the class label of sample \mathbf{x} , and $y(\mathbf{z}) \in \{1, ..., K\}$ is the index of the Gaussian from which the latent \mathbf{z} has been sampled.

Unsupervised Clustering

Clustering method

Algorithm 2 Unsupervised clustering procedure using GM-GANs. **Require:** X - a set of samples to cluster. K - number of clusters. M - number of samples to draw from each Gaussian. 1: $(G, D) \leftarrow \text{GM-GAN}(X, K)$ \triangleright Train an unsupervised GM-GAN on X using K Gaussians. 2: for k = 1...K do Sample $Z_k \sim N(\mu_k, \Sigma_k)^M$ \triangleright Sample *M* latent vectors from the *k*'th latent Gaussian. 3: 4: $\widetilde{X}_k \leftarrow G(Z_k)$ \triangleright Generate M samples using the set of latent vectors Z_k . 5: $\forall \widetilde{\mathbf{x}} \in \widetilde{X}_k \ y(\widetilde{\mathbf{x}}) \leftarrow k \quad \triangleright$ Label every sample by the Gaussian from which it was generated. 6: $\widetilde{X} \leftarrow \bigcup_k \widetilde{X}_k$ \triangleright Unite all samples into the set \widetilde{X} . 7: $c \leftarrow \text{classifier}(X, y)$ \triangleright Train a classifier on samples X and labels y. 8: $\forall \mathbf{x} \in X \text{ cluster}(\mathbf{x}) \leftarrow \arg \max_{k \in [K]} c(\mathbf{x})_k$ \triangleright Cluster X using classifier c.

- ► Train GM-GAN using training set X.
- Using the trained G, generate \tilde{X} and label k which is the index of Gaussian.
- ▶ Train a K-way multi-class classifier c.
- ► Cluster the training set X using c.

Quality and Diversity

- ► The probability p_X(x) can measure the quality of sample x ∈ X.
- ► A good trained G will map samples of high probability (dense area) in Z to samples of high probability (dense area) in X
- We sample with high $p_{\mathcal{Z}}(\mathbf{z})$ to increase the quality, however the diversity decreases at the same time.
- New scores were also proposed to measure the quality and diversity separately.

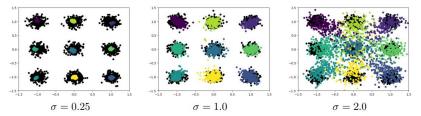
<ロト < @ ト < E ト < E ト E の へ C 13/19

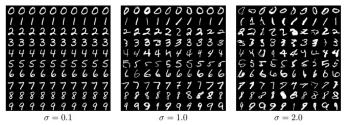
Datasets

Dataset Name	Description	Classes Number	Samples Dimension	Train Samples	Test Samples
Toy-Dataset	Points sampled from dif- ferent Gaussians in the 2-D Euclidean space.	9	2	5,000	-
MNIST	Images of handwritten digits.	10	28x28x1	60,000	10,000
Fashion- MNIST	Images of clothing articles.	10	28x28x1	60,000	10,000
CIFAR-10	Natural images.	10	32x32x3	50,000	10,000
STL-10	Natural images.	10	96x96x3	5,000	8,000
Synthetic Traffic Signs	Synthetic images of street traffic signs.	43	40x40x3	100,000	-

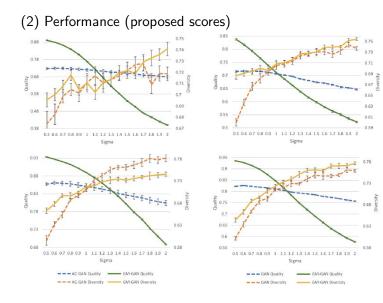
(1) Quality - Diversity trade off

• Toy dataset (K = 9)





<ロト < @ ト < 臣 ト < 臣 ト 三 の < で 15/1



16/19

(3) Performance (Inception score, Salimans et al., 2016) CIFAR-10 STL-10

Model (unsupervised)	Score
GAN	$5.71 (\pm 0.06)$
$\mathbf{GM}\text{-}\mathbf{GAN}\ (K=10)$	$5.92(\pm 0.07)$
$\mathbf{GM}\text{-}\mathbf{GAN}\ (K=20)$	$5.91 (\pm 0.05)$
GM-GAN ($K = 30$)	5.98 (±0.05)

Model (unsupervised)	Score
GAN	$6.80(\pm 0.07)$
GM-GAN ($K = 10$)	7.06 (±0.11)
$\mathbf{GM}\text{-}\mathbf{GAN}\ (K=20)$	$6.58(\pm 0.16)$
$\mathbf{GM}\text{-}\mathbf{GAN}\ (K=30)$	$7.03(\pm 0.10)$

Model (supervised)	Score
AC-GAN	$6.23 (\pm 0.07)$
GM-GAN ($K = 10$)	6.84 (±0.03)
$\mathbf{GM}\text{-}\mathbf{GAN}\left(K=20\right)$	$6.81 (\pm 0.04)$
$\mathbf{GM}\text{-}\mathbf{GAN}(K=30)$	$6.83 (\pm 0.02)$

Model (supervised)	Score
AC-GAN	$7.45 (\pm 0.10)$
GM-GAN ($K = 10$)	8.32 (±0.06)
$\mathbf{GM}\text{-}\mathbf{GAN}\ (K=20)$	$8.16(\pm 0.05)$
GM-GAN (K = 30)	$8.08(\pm 0.07)$

Inception score is a measure to evaluate the generated images.

(4) Performance of clustering (ACC, NMI scores)

Dataset	Method	ACC	NMI
MNIST	K-Means [XGF16]	0.5349	0.500
	AE + K-Means [XGF16]	0.8184	-
	DEC [XGF16]	0.8430	-
	DCEC [GLZY17]	0.8897	0.8849
	InfoGAN [CDH ⁺ 16]	0.9500	-
	$CAE-l_2 + K-Means$ [ANCA18]	0.9511	-
	CatGAN [Spr15b]	0.9573	-
	DEPICT [DHD+17]	0.9650	0.9170
	DAC [CWM ⁺ 17]	0.9775	0.9351
	GAR [KU18]	0.9832	-
	IMSAT [HMT ⁺ 17]	0.9840	-
	GM-GAN (Ours)	0.9924	0.9618
Synthetic Traffic Signs	K-Means*	0.2447	0.1977
	$AE + K-Means^*$	0.2932	0.2738
	GM-GAN (Ours)	0.8974	0.9274
Fashion-MNIST	K-Means*	0.4714	0.5115
	$AE + K-Means^*$	0.5353	0.5261
	GM-GAN (Ours)	0.5816	0.5690

ACC measures the accuracy of predicted labels by the clustering method.

NMI measures the mutual information between true labels and predicted labels.

Conclusion

- GM-GAN outperforms baselines for diverse multi-class datasets .
- GM-GAN can control the trade-off between the quality and the diversity of generated samples.