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Introduction

I The purpose is to improve the performance if the dataset
includes many different classes.

I Real world image datasets are characterized by large
inter-class and intra-class diversity in common.

I Here, the proposed method is that to use multi-modal
distributions (Gaussian mixture) instead of unimodal
distributions for the latent space.
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Notation

X : The high dimensional data space
Z : The low dimensional latent space

pX : The distribution of real training data
pZ : The distribution of some d-dimensional latent vector

G : The generator
D : The discriminator
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GAN

I The d-dimensional latent variable z ∈ Z is distributed as
Gaussian or Uniform,
e.g. N(0, Id) or U [−1, 1]d

which are unimodal distributions

I The target function

V (D,G) = Ex∼pX (x)[logD(x)] + Ez∼pZ(z)[log(1−D(G(z)))]

to find G and D which optimize minG maxD V (D,G)

The loss functions are :

L(G) = −Ez∼pZ(z)[logD(G(z))]

L(D) = −Ex∼pX (x)[logD(x)]− Ez∼pZ(z)[log(1−D(G(z)))]



6/19

Gaussian Mixture GAN (GM-GAN)

Propose to use a mixture of Gaussians as a multi-modal
distribution of latent variable z ∈ Rd.

pZ(z) =

K∑
k=1

αk · pk(z)

where
K : the number of Gaussians in the mixture,
αk : categorical random variable (αk = 1

K , ∀k ∈ {1, ...,K}),
and pk(z) : the multivariate Normal distribution N(µk,Σk)

I Unsupervised GM-GAN

I Supervised GM-GAN
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Unsupervised GM-GAN

Static : Fix the mean and variance of Gaussians.

I Sample µk from U [−c, c]d and let Σk = σ · Id.

Dynamic : Learn the mean and variance of Gaussians.

I Sample ε ∼ N(0, Id), with re-parametrized z = Akε+ µk
I Learn µk ∈ Rd and Σk = AkA

T
k ∈ Rd×d.

Here,
c ∈ R and σ ∈ R are hyper-parameters to be determined by the
user.
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Unsupervised GM-GAN

I The target function is exactly the same as the original one.

min
G

max
D

V (D,G)

where

V (D,G) = Ex∼pX (x)[logD(x)] + Ez∼pZ(z)[log(1−D(G(z)))]
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Supervised GM-GAN

Objective :
To separate real samples of class i from
(1) fake samples of class i and
(2) real samples of other class j, j 6= i.

Modify the unsupervised GM-GAN,

1. The output of Discriminator :
D returns a vector o ∈ RN where N is the number of classes,
each elements are the probability that the given sample is a
real sample of class i.

2. The loss function
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Supervised GM-GAN

We want G to generate a sample which will be classified by D as a
real sample in class f(k),

I where f : {1, . . . ,K} → {1, . . . , N}, a function mapping the
index of Gaussian to class labels
We expect :

1. K = N : bijective, map each Gaussian to unique class
2. K > N : surjective, map multiple Gaussians to the same class,

can be useful when intra-class diversity appears.
3. K < N : injective, map a single Gaussian to multiple classes

I D(x)j denotes the jth element of the vector o ∈ RN , for any
x ∈ X .



11/19

Supervised GM-GAN

The loss functions are modified as :

L(G) =− Ez∼pZ(z)

[
logD(G(z))f(y(z)) +

N∑
m=1,m 6=f(y(z))

log(1−D(G(z))m)
]

L(D) =− Ez∼pZ(z)

[ N∑
m=1

log(1−D(G(z))m)
]

− Ex∼pX (x)

[
logD(x)y(x) +

N∑
m=1,m 6=y(x)

log(1−D(x)m)
]

where y(x) ∈ {1, ..., N} is the class label of sample x, and
y(z) ∈ {1, ...,K} is the index of the Gaussian from which the latent z
has been sampled.
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Unsupervised Clustering

Clustering method

I Train GM-GAN using training set X.

I Using the trained G, generate X̃ and label k which is the
index of Gaussian.

I Train a K-way multi-class classifier c.

I Cluster the training set X using c.
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Quality and Diversity

I The probability pX (x) can measure the quality of sample
x ∈ X .

I A good trained G will map samples of high probability (dense
area) in Z to samples of high probability (dense area) in X

I We sample with high pZ(z) to increase the quality, however
the diversity decreases at the same time.

I New scores were also proposed to measure the quality and
diversity separately.
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Datasets



15/19

Experiments
(1) Quality - Diversity trade off

I Toy dataset (K = 9)

I MNIST dataset



16/19

Experiments

(2) Performance (proposed scores)
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Experiments

(3) Performance (Inception score, Salimans et al., 2016)

Inception score is a measure to evaluate the generated images.
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Experiments

(4) Performance of clustering (ACC, NMI scores)

ACC measures the accuracy of predicted labels by the clustering
method.
NMI measures the mutual information between true labels and
predicted labels.
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Conclusion

I GM-GAN outperforms baselines for diverse multi-class
datasets .

I GM-GAN can control the trade-off between the quality and
the diversity of generated samples.


