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Introduction

o Among numerous clustering methods, Gaussian Mixture Model is a
very classical and elegant one, which has still being consistently improved.

e But it has a fundamental assumption that the data is composed by
Gaussian distributions. However, real data sets rarely satisfy this
assumption, on which GMM can result in poor clusters.

e The ability of modeling complex distributions making GAN a
potential replacement of the Gaussian distribution for learning mixture
models.
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Gaussian Mixture Model and EM Algorithm

Gaussian Mixture Model consists of N Gaussian components,
N
p(@) =Y il (w5 i, %)
i=1

N
where z € R?, p, € R4, X, € R¥*4 and D=1

EM Algorithm
For (X,Z) ~ p(X, Z|0), X : observable variable, Z : hidden variable

@ E step : Calculate the (8| X,0,,—1) = Ez~p, (1(0]2)]|X)
@ M step : Maximize [(0]|X,60,,-1)

m—1
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Gaussian Mixture Model and EM Algorithm

Let X : observable instances, D : Data = {x1,za,...,xp}, 0 = {ay, s, X3},
zj; = 1 iff z; is generated by i-th gaussian model.(¢ =1,---N,j=1,--- M)

Then for j’th sample,
p(z;, 2;|0) = Za./\/' o iy X)) I(zi5 = 1)
Apply to EM Algorithm,

Q E step : Findes a guess of q(Z) accroding to the posterior

p (wj,zz-jle“’)

Y p <$j72ij|9(t)>

p (Z¢j|wj,9(t)) =

@ M step : 0 =argmax E,_ 11 g0y W(p(D, 716))
! ,

which can be calculated easily.
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Drawback of Generalized mixture Model with EM

Assume we replace Gaussian model to other complex model.

o First, set initial model #(®) randomly. Then p <z|D, 0(0)> is calculated.

o Let 20 = argmax, p (z|D, 0(0)). If model can be arbitarily capable,
there exists 0* s.t. p (z(o)|D, 0*) = 1 and otherwise 0.

o 9 become #*.

e Since argmax p <Z|D, 0(1)) =20 = argmax p <z|D7 9(0)),
we have Hz(l) = 0® and thus the algorithzm has converged.

e That would be likely to happen for using GANs as the model.
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e-EM Algorithm

EM Algorithm
For (X,Z) ~ p(X, Z|0), X : observable variable, Z : hidden variable

O E step : Calculate the I(0|X,0,-1) = Ezp, — (1(0]2)|X)
@ M step : Maximize (0| X, 0,—1)

e In E step, we match the distribution ¢(Z) to p(Z|X,6®), so that
KL(qllp) = 0

e However, we don’t have to exactly match ¢(Z) to p(Z|X,0®).
o Specifically, for ¢*)(Z) such that KL(¢®||p®)) = ¢ > 0 and
lim; s 4 00 Zf;é €; < 00, the algorithm converges.(Detail : appendix)

e-EM Algorithm
O «E step : Calculate the I(0|X,60,,_1) = Eznpo,  (1(012)|X)

@ M step : Maximize [(0|X,0,,—1)
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gorithm

Discriminator 1 |Ramd Generator 1

Training

Discriminator 2 |Rumd Generator 2
Data

Discriminator N [Ramd Generator N

@ E step : From current model (), assign training data to the cluster
using discriminators.

@ M step : For the clusterd data D = {Dy, D, ..., Dy}, train i-th GAN
model on D;
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GAN Mixture Model with e-EM Algorithm

— data flow
----- >
--oo» label flow Discriminator 1 Generator 1 [=—=—=

Classifier

.

Q c<-E step:
(1) From current model 6, sample a data set S®) = {(&;,:);—,} from
the GAN generators, where &; is generate by k-th generator and y; = k.
(2) Train a (not so perfect) classifier h, from S.
(3) Assign the cluster of each training instance x; by hq(x;).

@ M step : For the clusterd data D = {Dy, Ds, ..., Dy}, train i-th GAN
model on D; for several iterations.
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del with e-EM Algorithm

a: learning rate.

m: training set size.

N cluster number.

Nepoen: Number of epoch for GANs.
oy, number of augmented data points.

: randomly divide D into {D(O),, o Df\?)}
: B(Dﬂg)m)-ggw)} 4 trainWGAN(DfD), ?"-epach) for each i =

1,....] N
t=0
. while 8 not converged do
t=1t+1
S ={(®:. 1)}y is sampled from {G/;}]L, each with

probability \Dl(t_l)|/|D|.

9o, < Vo, = S0 eross_entropy(fa, (i), y;)]

On — 0p + - RMSPTOp(Qh,‘(]gh)

assign D as {D;}}X, by using h,(D;8)

fori =1to N do
add o instances from 1) — D; with highest posterior
for cluster i by hg to D;
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Experiments

Models
o GAN Mixture Model(GANMM)
e Gaussian Mixture Model(GMM)
@ Deep Embedded Clustering(DEC)
o GAN Mixture Model with EM(GANMM-EM)

Evaluate Metrics : using the data with oracle labels.

. N ) i
o Purity = >;°; ™ max; ~4

my

m; : size of cluster i, m;; : number of class j data in cluter i

o ARI = ™Muitmaoo
m
my11 : the number of pairs in same cluster and same oracle label
mop : the number of pairs in diff cluster and diff oracle label

12]-dp 1
2 dn log( dpcy )

(S a1o8(%)) (S, os(3)

o NMI =
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Experiments

Purity ARI NMI
GANMM 0.64300.0045  0.4924+0.0059 0.6159+0.0038
GMM 0.3261+0.0006  0.0991+0.0003  0.141440.0004
DEC 0.3065£0.0003  0.1437+0.0005 0.1935+0.0003

GANMM(EM) 0.2786+0.0019  0.0665£0.0013  0.2414+0.0004

Table 1: Comparison of clustering performance in raw feature space

on MNIST.

Purity ARI NMI
GANMM 0.8908+0.0015 0.8361£0.0025 0.8654+0.0008
GMM 0.8617x0.0008 0.7933£0.0011 0.8451%0.0002
DEC 0.8673+0.0000 0.8091+0.0000 0.8457+0.0000

GANMM(EM) 0.524310.0024  0.3210£0.0034  0.4701£0.0019

Table 3: Comparison of clustering performance in embedded feature
space on MNIST
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Appendix : e-EM Algorithm

We can observe r.v X which is parameterized by 6, and Z is hidden r.v.
Object : maximize p(X|0) = >, P(X, Z|0). Let Inp(X|0) = LL(0).
Let q(Z) is marginal distribution of Z. Then LL(0) = L(q,0) + KL(q||p),

where £(g,0) = Y5, ¢(2) In Z2A% and KL(ql|p) = — Y5 ¢(2) In 2E70.

In € — E step, find ¢V s.t. KL (¢®|p®) =¢ >0
Then, Vg, £(¢®),0®)) + ¢, = LL(OW) > L(q,0W)

In M step, ) = argmax L(¢*~1,0) , hence L(g*~D,00)) > L£(g*D,9¢-1)
0

Therefore, we have
LLOW) > £(g*Y 00 > £(gtY, 9¢1)

t—1
= LL(Q(til)) — €t—1 Z LL(G(O)) - Zéi
=0

If we keep limy_, 4 o Zf;é €; < oo, 3C >0s.t. forall t > C,
LL(O®) > LL(A*Y) and thus the procedure converges.
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