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Introduction

= Slightly improve Bayesian GAN(BGAN, Saatchi and Wilson).

= Change likelihood(operation switch) and prior(informative)

= Theoretically and empirically prove PROBGAN is better than BGAN.
= PROBGAN converges to the true data generation(if true is in our model).
= BGAN is not suitable for any minimax-style GAN objective.
= There are toy example BGAN fails in converging.
= Experiments

= Algorithm: BGAN algorithm + alpha
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GAN Framework

= Data space X, Latent space Z. True data generator: pgas, : 2 — X.
= Generator with para. 0g: peen(-|0g) : 2 — X
= Discriminator with para. 64 D(:|64) : X — [0,1]

= GAN(Goodfellow, 2016): Find 6, and 6, s.t.
X i B, 08 D(x12)] + v, 10, g (1 — D(x6)]
= General GAN Framework: Find 0, and 04 s.t.
max Jo(04|0g) = Exvpque, [1 (D(X100))] + B pyen(-10) [02 (D(x(0a))]
max Te(0510d) = B pyen(-105) [¢3 (D(X104))]
= minimax-style: ¢» = —¢3

= Mode Collapse (Control ¢, Multiple generator, Bayesian GAN)
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BGAN

Theory Algorithm

Give a (underying) distn. for 04(qq) and 0¢(qg).

Generator: pmodei(X|Gg) = Eo,~qp(0,) [Peen(X10g)] for x € X.

Goal: estimate posterior of g

Information

P(0gl04) o< exp {T¢(04l0g)} prior(0g|c)
P(04]0g) o< exp {Ta(0¢|0a)} prior(falowa)

Experiments
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BGAN

= Posterior estimation for g: for given qu) and qg), update g4 and g; as:

oV Oe)1d) o< exp B, Tu0s18)  priorflo)
a5 0)1af? ox exp {E,,_ o Tl0l00) } priorOlac)

= prior: weak informative prior (indep. to 0,04 respectively).
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PROBGAN

= prior at time t: informative prior for generator. (Compatibility)

P”‘O’(t)(egmg) = qét)(eg)

(a0 = o (00)1, o)

= likelihood: switch E and J (intuitive & empirical)

= Posterior estimation for g: for given qff) and qg), update qq and g, as:

qgﬂ)(og) X exp {jg(eg‘EGqug)ed)} qg)(eg)

a1 (0) ox exp { Tul0ulE,__00%)}

g

Experiments
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(Thm 1) Guarantee of Convergence

Assume the GAN objective(¢1, ¢2, ¢3) and the discriminator space are
symmetry. If there exist a distn. g for 6, s.t.

Pmodel(X|qg) = Eo,~qz [Peen(X|0g)] = paata(x) for all x € X, there exists a ideal
discriminator distn. qg s.t. D(x|qz) = Eg,~q: D(+|04) = Const.. Moreover, q;
and g is an equilibrium of the dynamic in previous page.
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(Lemma 1) Compatibility Issue

Consider a joint distribution p(x, y) of variable X and Y. Its conditional
distributions can be represented in the forms of p(x]y) o< exp{L(x, ¥)}gx(x) and
p(y|x) o< exp{—L(x, ¥)}q,(y) only if X and Y are independent and L(x,y) is
decomposable, i.e. 3L, and Ly, L(x,y) = L«(x) + Ly(y).
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(Lemma 2) Convergence Issue

= Set Data space X = {0,1}, para. space for generator ©, = {69,6;}, para.
space for discriminator ©4 = {65, 0%}.
= Generator: pgen(x]02) = Bern(0), pgen(x|0;) = Bern(1)
= Distn. of generators: gg(0g: |y) = 71(0g = 9;,) + (1 =)0 = 92)
» Discriminator: D(x|0%) = €l(x = 1) + (1 — €)I(x = 0),
D(x|6%) = el(x = 0) + (1 — €)I(x = 1)

Lemma 2. For every A € (0,1) s.t. the desired generator distribution
q5(0g) = gg(0gly = A) is not a fixed point of the iterative dynamics of
PROBGAN.
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SGHMC based - same with BGAN

Algorithm 1 Our Meta Inference Algorithm

(0) My

dmfm=1

Input: Initial Monte Carlo samples of {# and

{Hg,t_))n ,tf“;l learning rate 1, SGHMC noise factor a,
number of updates in SGHMC procedure L.
fort=1,.--- do
for m = 1to M, do
Oam Hdt.m
for! =1to Ldo
n ~ N(0,2anl)
v+ (I1—a)v+7Vs,log qé””(@ilm) +n
Qd,m — Hd‘m +v
end for
B+ bam
end for
for m = 1to M, do
Oym = O
for! =1to Ldo
n ~ N(0,2anl)
Vi (l—a)y+nVg, log q(ng)(GQ,m) +1
Ogm — Ogom +V
end for
O = O m
end for
end for

Experiments
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Difference from BGAN

= The only difference is prior term of generator.
Vo, logq t+1)(9 )= Vggj(GgHEngqg)Gd) + Vg, log qg)(eg)

= Solution
= Gaussian Mixutre Approximation (GMA)' From Monte Carlo samples of 0g

. () \Me
at time t {Ggym} | approax qg (0 ) as:
m=

(t+1) ||9g g,mHz
0= con] 55 121

= Partial Summation Approximation (PSA) Above equation can be expressed
inductively:

t
(t+1) _ .
Vo, logag ' (0g) = Z; Vegj(gg“Eequg)ed)
=
Therefore, if we store all historical discriminator samples, it can be
calculated.
Practically, we store subset of discriminators.
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High-Dimensional Multi-modal synthetic dataset

= Dataset: latent dim(d) = 2, Data dim(D) = 100, number of modes(n) =
10

z~U[-1,1]% x = A(z+ b)), Ai ~ N(0, 0albxd), bi ~ N(O,02ls)(i =1, .., n)

o4 =0 =5. Generate K samples {xx}5_; ~ Pmodel
= Metric: projection distance
ep(X) = minicicn €i(x) 2 || x — A(AT A) AT X||2.
Hit set H; 2 {x|ei(xx) < n} (n: threshold. makes ;s are indep.)
Projected hit set PH; 2 {(ATA) AT x— bix € Hi}
= Hit ratio H, 2 30, |Hil/K
= Hit distance Hg £ 300, 30, cpy €i(x)/ 20y |1l
= Cover error Cc = 1570 KL (p(-|PH;)|[U[-1,1]9)
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Theory

Algorithm

High-Dimensional Multi-modal synthetic dataset

Experiments

Table 2: Hit ratios (#,.), hit distances (Hq), cover errors (C.) results. Note, if the model failed to
oo. In that case, we report the
averaged KL-divergence on modes captured by the model in brackets.

capture all the modes of real data, by definition its cover error i

| Hr (HIGHER IS BETTER), H4 (LOWER IS BETTER)

Ce (LOWER 1S BETTER)

‘ GAN-MM  GAN-NS WGAN LSGAN ‘ GAN-MM  GAN-NS  WGAN LSGAN
GAN 0.86,22.6 0.78.26.7  0.74. 12.11 8.86 7.20 o (12.07)
MGAN 4.2 0.67.31.7 0.81 5.46 6.31 5.00 o0 (4.25)
BGAN 1.0.5.5 oo (1.73) 1.76 4.32 1.80
PROBGAN-GMA 1.0,7.4 1.84 1.73 3.01 1.79
PROBGAN-PSA 1.0.5.8 175 1.75 2.28 1.74

Table 3: Inception score and FID results on CIFAR-10. Results of each model trained with 4 different
GAN objectives are all reported.

| INCEPTION SCORES (HIGHER 1S BETTER)

FIDS (LOWER IS BETTER)

| GAN-MM  GAN-NS WGAN LSGAN | GAN-MM GAN-NS WGAN LSGAN
DCGAN 6.53 7.21 7.19 7.36 35.57 27.68 28.31 29.11
MGAN 7.19 7.25 7.18 7.34 30.01 27.55 28.37 30.72
BGAN 7.21 7.37 7.26 7.46 29.87 24.32 29.87 29.19
PROBGAN-PSA 7.75 7.53 7.28 7.36 24.60 2. 27.46 26.90
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Natural Image Dataset

Theory

= Dataset: CIFAR10, STL-10, ImageNet

Metric:

= Inception Score: exp (Ex [KL(p(y|x)||p(y))]) where p(y|x): pre-trained

Algorithm

Experiments

inception model(googlenet) and p(y) is average of p(y|x) over all images in

dataset.

Frechet Inception Distance(FID): measure the similarity between the real

and synthetic data.

DATASET

STL-10 IMAGENET
IncepTION sCORES  FIDs | INcEPTION scores  FIDs
DCGAN 8.05+0.101 51.01 7.66 £0.113 43.99
MGAN 8.72+0.096 51.56 7.77 £ 0.108 45.75
BGAN 8.84 +0.100 47.35 8.52+£0.075 29.68
PROBGAN-PSA 8.87 £ 0.095 46.74 8.57 £0.073 27.69
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BGAN and PROBGAN Theory

Natural Image Dataset

vl e R sea! 5.8 }

(a) MGAN (Epoch 250) (b) BGAN (Epoch 250) (c) ProbGAN-PSA (Epoch 250)
Figure 3: Images generated by MGAN, BGAN and our model trained on CIFAR 10 with GAN-NS
objective. The tenth generator of MGAN (Figure 3(a)) and the first of BGAN (Figure [3{B)) collapse
while generators of our method all work well. DCGAN (Figure [10]in the appendix) also presents
'single generator collapse’ issue. Note that, mode collapse also happens when baseline models trained

with other GAN objectives.

g

= A=

(a) ImageNet (randomly picked) (b} STL-10 (randomly picked) (c) STL-10 (cherry-picked)
Figure 4: Images generated by ProbGAN trained on ImageNet (left) and STL-10 (middle, right).
Figure [#(c)]are cherry-picked synthetic images on STL-10.
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